These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35104611)

  • 41. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.
    Zhang Y; An J; Yang GY; Bai A; Zheng B; Lou Z; Wu G; Ye W; Chen HF; Feng Y; Manco G
    PLoS One; 2015; 10(2):e0115130. PubMed ID: 25706379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: structural basis for catalytic promiscuity in wild-type and designed mutants of 3-keto-L-gulonate 6-phosphate decarboxylase.
    Wise EL; Yew WS; Akana J; Gerlt JA; Rayment I
    Biochemistry; 2005 Feb; 44(6):1816-23. PubMed ID: 15697207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzyme promiscuity in the hormone-sensitive lipase family of proteins.
    Giuseppe M; Luigia M; Elena P; Yan F; Luigi M
    Protein Pept Lett; 2012 Feb; 19(2):144-54. PubMed ID: 21933124
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using multi-objective computational design to extend protein promiscuity.
    Suarez M; Tortosa P; Garcia-Mira MM; Rodríguez-Larrea D; Godoy-Ruiz R; Ibarra-Molero B; Sanchez-Ruiz JM; Jaramillo A
    Biophys Chem; 2010 Mar; 147(1-2):13-9. PubMed ID: 20034725
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa.
    Norris AL; Serpersu EH
    Protein Sci; 2013 Jul; 22(7):916-28. PubMed ID: 23640799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.
    Yao J; Guo H; Chaiprasongsuk M; Zhao N; Chen F; Yang X; Guo H
    Biochemistry; 2015 Sep; 54(34):5366-75. PubMed ID: 26244568
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Johnson BP; Kumar V; Scull EM; Thomas LM; Bourne CR; Singh S
    ACS Chem Biol; 2022 Jan; 17(1):85-102. PubMed ID: 34905349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Silico Engineering of Enzyme Access Tunnels.
    Gautieri A; Rigoldi F; Torretta A; Redaelli A; Parisini E
    Methods Mol Biol; 2022; 2397():203-225. PubMed ID: 34813066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformational changes observed in enzyme crystal structures upon substrate binding.
    Gutteridge A; Thornton J
    J Mol Biol; 2005 Feb; 346(1):21-8. PubMed ID: 15663924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Origins of specificity and promiscuity in metabolic networks.
    Carbonell P; Lecointre G; Faulon JL
    J Biol Chem; 2011 Dec; 286(51):43994-44004. PubMed ID: 22052908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flexibility and reactivity in promiscuous enzymes.
    Gatti-Lafranconi P; Hollfelder F
    Chembiochem; 2013 Feb; 14(3):285-92. PubMed ID: 23362046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase.
    Franceschini S; van Beek HL; Pennetta A; Martinoli C; Fraaije MW; Mattevi A
    J Biol Chem; 2012 Jun; 287(27):22626-34. PubMed ID: 22605340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structures of a novel family IV esterase in free and substrate-bound form.
    Höppner A; Bollinger A; Kobus S; Thies S; Coscolín C; Ferrer M; Jaeger KE; Smits SHJ
    FEBS J; 2021 Jun; 288(11):3570-3584. PubMed ID: 33342083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues.
    Hrmova M; Fincher GB
    Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tracing the Repertoire of Promiscuous Enzymes along the Metabolic Pathways in Archaeal Organisms.
    Martínez-Núñez MA; Rodríguez-Escamilla Z; Rodríguez-Vázquez K; Pérez-Rueda E
    Life (Basel); 2017 Jul; 7(3):. PubMed ID: 28703743
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The challenges of dealing with promiscuous drug-metabolizing enzymes, receptors and transporters.
    Ma Q; Lu AY
    Curr Drug Metab; 2008 Jun; 9(5):374-83. PubMed ID: 18537574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1.
    Bencharit S; Edwards CC; Morton CL; Howard-Williams EL; Kuhn P; Potter PM; Redinbo MR
    J Mol Biol; 2006 Oct; 363(1):201-14. PubMed ID: 16962139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
    Barrozo A; Duarte F; Bauer P; Carvalho AT; Kamerlin SC
    J Am Chem Soc; 2015 Jul; 137(28):9061-76. PubMed ID: 26091851
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution.
    Janzen E; Blanco C; Peng H; Kenchel J; Chen IA
    Chem Rev; 2020 Jun; 120(11):4879-4897. PubMed ID: 32011135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.