BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35104648)

  • 1. Cathodic biofilms - A prerequisite for microbial electrosynthesis.
    Vassilev I; Dessì P; Puig S; Kokko M
    Bioresour Technol; 2022 Mar; 348():126788. PubMed ID: 35104648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode.
    Aryal N; Wan L; Overgaard MH; Stoot AC; Chen Y; Tremblay PL; Zhang T
    Bioelectrochemistry; 2019 Aug; 128():83-93. PubMed ID: 30959398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source.
    Izadi P; Fontmorin JM; Godain A; Yu EH; Head IM
    NPJ Biofilms Microbiomes; 2020 Oct; 6(1):40. PubMed ID: 33056998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system.
    Li C; Cheng S
    Crit Rev Biotechnol; 2019 Dec; 39(8):1015-1030. PubMed ID: 31496297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm.
    Song TS; Zhang H; Liu H; Zhang D; Wang H; Yang Y; Yuan H; Xie J
    Bioresour Technol; 2017 Nov; 243():573-582. PubMed ID: 28704738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Housing of electrosynthetic biofilms using a roll-up carbon veil electrode increases CO
    Li S; Kim M; Song YE; Hwan Son S; Kim HI; Jae J; Yan Q; Fei Q; Kim JR
    Bioresour Technol; 2024 Feb; 393():130157. PubMed ID: 38065517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications.
    Conners EM; Rengasamy K; Bose A
    J Ind Microbiol Biotechnol; 2022 Jul; 49(4):. PubMed ID: 35381088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically active biofilms: facts and fiction. A review.
    Babauta J; Renslow R; Lewandowski Z; Beyenal H
    Biofouling; 2012; 28(8):789-812. PubMed ID: 22856464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress and perspectives on microbial electrosynthesis for valorisation of CO
    Thulluru LP; Ghangrekar MM; Chowdhury S
    J Environ Manage; 2023 Apr; 332():117323. PubMed ID: 36716542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operational and technical considerations for microbial electrosynthesis.
    Desloover J; Arends JB; Hennebel T; Rabaey K
    Biochem Soc Trans; 2012 Dec; 40(6):1233-8. PubMed ID: 23176460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO
    Yu L; Yuan Y; Tang J; Zhou S
    Bioelectrochemistry; 2017 Oct; 117():23-28. PubMed ID: 28525799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments and key barriers to microbial CO
    Lee SY; Oh YK; Lee S; Fitriana HN; Moon M; Kim MS; Lee J; Min K; Park GW; Lee JP; Lee JS
    Bioresour Technol; 2021 Jan; 320(Pt A):124350. PubMed ID: 33186841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Let's chat: Communication between electroactive microorganisms.
    Paquete CM; Rosenbaum MA; Bañeras L; Rotaru AE; Puig S
    Bioresour Technol; 2022 Mar; 347():126705. PubMed ID: 35065228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halophilic CO
    Kiran R; Yadav R; Sathe D; Patil SA
    Bioresour Technol; 2023 Mar; 371():128637. PubMed ID: 36669625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocathodic performance of bioelectrochemical systems operated at low temperature.
    Zhang G; Su F; Jiao Y; Chen Q; Lee DJ
    Bioresour Technol; 2020 Aug; 310():123463. PubMed ID: 32387978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation.
    Ye J; Ren G; Wang C; Hu A; Li F; Zhou S; He Z
    Biosens Bioelectron; 2021 Oct; 190():113464. PubMed ID: 34197998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.
    Kazemi M; Biria D; Rismani-Yazdi H
    Phys Chem Chem Phys; 2015 May; 17(19):12561-74. PubMed ID: 25898971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial electron uptake in microbial electrosynthesis: a mini-review.
    Karthikeyan R; Singh R; Bose A
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1419-1426. PubMed ID: 30923971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.