These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35104909)

  • 1. Disambiguating Clinical Abbreviations Using a One-Fits-All Classifier Based on Deep Learning Techniques.
    Jaber A; Martínez P
    Methods Inf Med; 2022 Jun; 61(S 01):e28-e34. PubMed ID: 35104909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disambiguating Clinical Abbreviations by One-to-All Classification: Algorithm Development and Validation Study.
    Sung SF; Hu YH; Chen CY
    JMIR Med Inform; 2024 Oct; 12():e56955. PubMed ID: 39352715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving clinical abbreviation sense disambiguation using attention-based Bi-LSTM and hybrid balancing techniques in imbalanced datasets.
    Hosseini M; Rasekh AH; Keshavarzi A
    J Eval Clin Pract; 2024 Oct; 30(7):1327-1336. PubMed ID: 39031903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD).
    Wu Y; Denny JC; Trent Rosenbloom S; Miller RA; Giuse DA; Wang L; Blanquicett C; Soysal E; Xu J; Xu H
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e79-e86. PubMed ID: 27539197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Abbreviation Disambiguation Using Deep Contextualized Representation.
    Peng M; Quan H
    Stud Health Technol Inform; 2020 Jun; 270():88-92. PubMed ID: 32570352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation.
    Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T
    J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation Classification for Bleeding Events From Electronic Health Records Using Deep Learning Systems: An Empirical Study.
    Mitra A; Rawat BPS; McManus DD; Yu H
    JMIR Med Inform; 2021 Jul; 9(7):e27527. PubMed ID: 34255697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging Large Language Models for Clinical Abbreviation Disambiguation.
    Hosseini M; Hosseini M; Javidan R
    J Med Syst; 2024 Feb; 48(1):27. PubMed ID: 38411689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep contextualized embeddings for quantifying the informative content in biomedical text summarization.
    Moradi M; Dorffner G; Samwald M
    Comput Methods Programs Biomed; 2020 Feb; 184():105117. PubMed ID: 31627150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oversampling effect in pretraining for bidirectional encoder representations from transformers (BERT) to localize medical BERT and enhance biomedical BERT.
    Wada S; Takeda T; Okada K; Manabe S; Konishi S; Kamohara J; Matsumura Y
    Artif Intell Med; 2024 Jul; 153():102889. PubMed ID: 38728811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.
    Li X; Yuan W; Peng D; Mei Q; Wang Y
    BMC Med Inform Decis Mak; 2022 Apr; 21(Suppl 9):377. PubMed ID: 35382811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A convolutional route to abbreviation disambiguation in clinical text.
    Joopudi V; Dandala B; Devarakonda M
    J Biomed Inform; 2018 Oct; 86():71-78. PubMed ID: 30118854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioBERT and Similar Approaches for Relation Extraction.
    Bhasuran B
    Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence Labeling for Disambiguating Medical Abbreviations.
    Cevik M; Mohammad Jafari S; Myers M; Yildirim S
    J Healthc Inform Res; 2023 Dec; 7(4):501-526. PubMed ID: 37927372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does BERT need domain adaptation for clinical negation detection?
    Lin C; Bethard S; Dligach D; Sadeque F; Savova G; Miller TA
    J Am Med Inform Assoc; 2020 Apr; 27(4):584-591. PubMed ID: 32044989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning to refine the identification of high-quality clinical research articles from the biomedical literature: Performance evaluation.
    Lokker C; Bagheri E; Abdelkader W; Parrish R; Afzal M; Navarro T; Cotoi C; Germini F; Linkins L; Haynes RB; Chu L; Iorio A
    J Biomed Inform; 2023 Jun; 142():104384. PubMed ID: 37164244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study.
    Rivera Zavala R; Martinez P
    JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction.
    Rasmy L; Xiang Y; Xie Z; Tao C; Zhi D
    NPJ Digit Med; 2021 May; 4(1):86. PubMed ID: 34017034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.