These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35105046)

  • 1. Design of broadband Helmholtz resonator arrays using the radiation impedance method.
    Rajendran V; Piacsek A; Méndez Echenagucia T
    J Acoust Soc Am; 2022 Jan; 151(1):457. PubMed ID: 35105046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical model to predict the low-frequency sound absorption of a helmholtz resonator array.
    Kim S; Kim YH; Jang JH
    J Acoust Soc Am; 2006 Apr; 119(4):1933-6. PubMed ID: 16642803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Helmholtz Resonators Using Multiple Necks.
    Papadakis NM; Stavroulakis GE
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems.
    Jiménez N; Romero-García V; Pagneux V; Groby JP
    Sci Rep; 2017 Oct; 7(1):13595. PubMed ID: 29051627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative solution to enhance the Helmholtz resonator sound absorber in low-frequency noise by nature inspiration.
    Basirjafari S
    J Environ Health Sci Eng; 2020 Dec; 18(2):873-882. PubMed ID: 33312609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-perfect sound absorption using hybrid resonance between subwavelength Helmholtz resonators with non-uniformly partitioned cavities.
    Choi E; Jeon W
    Sci Rep; 2024 Feb; 14(1):3174. PubMed ID: 38326525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation on noise attenuation by acoustic liner constructed by Helmholtz resonators with extended necks.
    Guo J; Fang Y; Jiang Z; Zhang X
    J Acoust Soc Am; 2021 Jan; 149(1):70. PubMed ID: 33514129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations.
    Guo J; Fang Y; Qu R; Liu Q; Zhang X
    J Acoust Soc Am; 2021 Aug; 150(2):1370. PubMed ID: 34470319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Design of Acoustic Metamaterial of Multiple Parallel Hexagonal Helmholtz Resonators by Combination of Finite Element Simulation and Cuckoo Search Algorithm.
    Yang F; Wang E; Shen X; Zhang X; Yin Q; Wang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators.
    Groby JP; Lagarrigue C; Brouard B; Dazel O; Tournat V; Nennig B
    J Acoust Soc Am; 2015 Jan; 137(1):273-80. PubMed ID: 25618058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of interference among parallel absorbers on acoustic characteristics of an absorbing panel.
    Han L; Ji H; Qiu J
    Rev Sci Instrum; 2021 Jun; 92(6):064901. PubMed ID: 34243591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Performance Evaluation of the Helmholtz Resonator Inspired Acoustic Absorber Using Various Materials.
    Lee SH; Kang BS; Kim GM; Roh YR; Kwak MK
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33142730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite honeycomb metasurface panel for broadband sound absorption.
    Peng X; Ji J; Jing Y
    J Acoust Soc Am; 2018 Oct; 144(4):EL255. PubMed ID: 30404495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored acoustic metamaterials. Part II. Extremely thick-walled Helmholtz resonator arrays.
    Smith MJA; Abrahams ID
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20220125. PubMed ID: 35756874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters.
    Gao YX; Lin YP; Zhu YF; Liang B; Yang J; Yang J; Cheng JC
    Sci Rep; 2020 Jul; 10(1):10705. PubMed ID: 32612130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator.
    Bi S; Yang F; Tang S; Shen X; Zhang X; Zhu J; Yang X; Peng W; Yuan F
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphite-oxide hybrid multi-degree of freedom resonator metamaterial for broadband sound absorption.
    Bucciarelli F; Malfense Fierro GP; Rapisarda M; Meo M
    Sci Rep; 2022 Aug; 12(1):14611. PubMed ID: 36028529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency multi-order acoustic absorber based on spiral metasurface.
    Kong D; Huang S; Li D; Cai C; Zhou Z; Liu B; Cao G; Chen X; Li Y; Liu S
    J Acoust Soc Am; 2021 Jul; 150(1):12. PubMed ID: 34340482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.