These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35105055)

  • 1. Chemisorbed vs physisorbed surface charge and its impact on electrokinetic transport: Carbon vs boron nitride surface.
    Mangaud E; Bocquet ML; Bocquet L; Rotenberg B
    J Chem Phys; 2022 Jan; 156(4):044703. PubMed ID: 35105055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile electrification of two-dimensional nanomaterials in water.
    Grosjean B; Bocquet ML; Vuilleumier R
    Nat Commun; 2019 Apr; 10(1):1656. PubMed ID: 30971700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description.
    Joly L; Meißner RH; Iannuzzi M; Tocci G
    ACS Nano; 2021 Sep; 15(9):15249-15258. PubMed ID: 34491721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Roughness Explains the Observed Water Contact Angle and Slip Length on 2D Hexagonal Boron Nitride.
    Kumar Verma A; Govind Rajan A
    Langmuir; 2022 Aug; 38(30):9210-9220. PubMed ID: 35866875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemisorption of Hydroxide on 2D Materials from DFT Calculations: Graphene versus Hexagonal Boron Nitride.
    Grosjean B; Pean C; Siria A; Bocquet L; Vuilleumier R; Bocquet ML
    J Phys Chem Lett; 2016 Nov; 7(22):4695-4700. PubMed ID: 27809540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Grain Boundaries and Interfacial Electrostatic Interactions Modulate Water Desalination via Nanoporous Hexagonal Boron Nitride.
    Sharma BB; Govind Rajan A
    J Phys Chem B; 2022 Feb; 126(6):1284-1300. PubMed ID: 35120291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the Water Contact Angle Using Surface Roughness: Interfacial Properties of Hexagonal Boron Nitride Surfaces.
    Verma AK; Sharma BB
    Langmuir; 2024 Jul; ():. PubMed ID: 39056521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.
    Govind Rajan A; Strano MS; Blankschtein D
    J Phys Chem Lett; 2018 Apr; 9(7):1584-1591. PubMed ID: 29528646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces.
    Seal A; Govind Rajan A
    Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended Electrokinetic Characterization of Flat Solid Surfaces.
    Werner C; Körber H; Zimmermann R; Dukhin S; Jacobasch HJ
    J Colloid Interface Sci; 1998 Dec; 208(1):329-346. PubMed ID: 9820781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water Electric Field Induced Modulation of the Wetting of Hexagonal Boron Nitride: Insights from Multiscale Modeling of Many-Body Polarization.
    Luo S; Misra RP; Blankschtein D
    ACS Nano; 2024 Jan; 18(2):1629-1646. PubMed ID: 38169482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Electrostatic Interactions on Kapitza Resistance in Hexagonal Boron Nitride-Water Interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    Langmuir; 2022 Jul; 38(29):8783-8793. PubMed ID: 35830549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes.
    Mouterde T; Bocquet L
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):148. PubMed ID: 30564898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical Interfacial Layer Model for the Capacitance and Electrokinetics of Charged Aqueous Interfaces.
    Uematsu Y; Netz RR; Bonthuis DJ
    Langmuir; 2018 Aug; 34(31):9097-9113. PubMed ID: 29495657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Theoretical Insights into Interfacial Properties of 2D Materials for Selective Water Transport Membranes: A Critical Review.
    Verma AK; Sharma BB
    Langmuir; 2024 Apr; 40(15):7812-7834. PubMed ID: 38587122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of water at water-graphene and water-hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy.
    Ohto T; Tada H; Nagata Y
    Phys Chem Chem Phys; 2018 May; 20(18):12979-12985. PubMed ID: 29707716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.