These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35105116)

  • 1. Relaxation oscillation in planar discontinuous piecewise smooth fast-slow systems.
    Toniol Cardin P
    Chaos; 2022 Jan; 32(1):013104. PubMed ID: 35105116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics.
    Cao Q; Wiercigroch M; Pavlovskaia EE; Thompson JM; Grebogi C
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1865):635-52. PubMed ID: 17698466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling, singular perturbation and bifurcation analyses of bitrophic food chains.
    Kooi BW; Poggiale JC
    Math Biosci; 2018 Jul; 301():93-110. PubMed ID: 29684407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle.
    Kosiuk I; Szmolyan P
    J Math Biol; 2016 Apr; 72(5):1337-68. PubMed ID: 26100376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation oscillations of a piecewise-smooth slow-fast Bazykin's model with Holling type Ⅰ functional response.
    Wu X; Lu S; Xie F
    Math Biosci Eng; 2023 Sep; 20(10):17608-17624. PubMed ID: 38052528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-dimensional separation principle for the analysis of relaxation oscillations in nonlinear systems: application to a model of HIV infection.
    Lenbury Y; Ouncharoen R; Tumrasvin N
    IMA J Math Appl Med Biol; 2000 Sep; 17(3):243-61. PubMed ID: 11103720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast numerical integration of relaxation oscillator networks based on singular limit solutions.
    Linsay PS; Wang DL
    IEEE Trans Neural Netw; 1998; 9(3):523-32. PubMed ID: 18252476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition of phase response properties and singularity in the circadian limit cycle of cultured cells.
    Koinuma S; Kori H; Tokuda IT; Yagita K; Shigeyoshi Y
    PLoS One; 2017; 12(7):e0181223. PubMed ID: 28715496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllability of heterogeneous multiagent systems with two-time-scale feature.
    Long M; Su H; Wang X; Liu B
    Chaos; 2019 Apr; 29(4):043116. PubMed ID: 31042957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast phase randomization via two-folds.
    Simpson DJ; Jeffrey MR
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150782. PubMed ID: 27118901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Koopman analysis of the singularly perturbed van der Pol oscillator.
    Katayama N; Susuki Y
    Chaos; 2024 Sep; 34(9):. PubMed ID: 39312730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable chimera states: A geometric singular perturbation approach.
    Venegas-Pineda LG; Jardón-Kojakhmetov H; Cao M
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37972302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the limit cycles of a class of planar singular perturbed differential equations.
    Wu Y; Zhou J
    ScientificWorldJournal; 2014; 2014():379897. PubMed ID: 25143973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canard phenomenon in a slow-fast modified Leslie-Gower model.
    Ambrosio B; Aziz-Alaoui MA; Yafia R
    Math Biosci; 2018 Jan; 295():48-54. PubMed ID: 29104133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling a Fast-Slow Bitrophic Food Chain with Harvesting.
    Salman SM
    Nonlinear Dynamics Psychol Life Sci; 2019 Apr; 23(2):177-197. PubMed ID: 30898191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant squid-hidden canard: the 3D geometry of the Hodgkin-Huxley model.
    Rubin J; Wechselberger M
    Biol Cybern; 2007 Jul; 97(1):5-32. PubMed ID: 17458557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator.
    Coombes S; Osbaldestin AH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4057-66. PubMed ID: 11088930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis on recurrence behavior in oscillating networks of biologically relevant organic reactions.
    Yu P; Wang XY
    Math Biosci Eng; 2019 Jun; 16(5):5263-5286. PubMed ID: 31499712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system.
    Akman OE; Broomhead DS; Abadi RV; Clement RA
    J Math Biol; 2005 Dec; 51(6):661-94. PubMed ID: 15940536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Excitability and Singular Bifurcations.
    De Maesschalck P; Wechselberger M
    J Math Neurosci; 2015 Dec; 5(1):29. PubMed ID: 26246435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.