These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35105121)

  • 1. Intermingled attractors in an asymmetrically driven modified Chua oscillator.
    Tanze Wontchui T; Ekonde Sone M; Ujjwal SR; Effa JY; Ekobena Fouda HP; Ramaswamy R
    Chaos; 2022 Jan; 32(1):013106. PubMed ID: 35105121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable chaos without symmetry in generalized synchronization.
    Guan S; Lai CH; Wei GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins, and quasiriddling.
    Wontchui TT; Effa JY; Fouda HPE; Ujjwal SR; Ramaswamy R
    Phys Rev E; 2017 Dec; 96(6-1):062203. PubMed ID: 29347357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins.
    Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A
    Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps.
    Bashkirtseva I; Ryashko L
    Chaos; 2021 May; 31(5):053101. PubMed ID: 34240946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic-orbit analysis and scaling laws of intermingled basins of attraction in an ecological dynamical system.
    Pereira RF; Camargo S; de S Pinto SE; Lopes SR; Viana RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056214. PubMed ID: 19113207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistable dynamics and attractors self-reproducing in a new hyperchaotic complex Lü system.
    Gu Y; Li G; Xu X; Song X; Wu S
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37695926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are chaotic attractors rare in multistable systems?
    Feudel U; Grebogi C
    Phys Rev Lett; 2003 Sep; 91(13):134102. PubMed ID: 14525307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermingled basins in coupled Lorenz systems.
    Camargo S; Viana RL; Anteneodo C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036207. PubMed ID: 22587161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of chimeras through induced multistability.
    Ujjwal SR; Punetha N; Prasad A; Ramaswamy R
    Phys Rev E; 2017 Mar; 95(3-1):032203. PubMed ID: 28415241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basin of attraction for chimera states in a network of Rössler oscillators.
    Dos Santos V; Borges FS; Iarosz KC; Caldas IL; Szezech JD; Viana RL; Baptista MS; Batista AM
    Chaos; 2020 Aug; 30(8):083115. PubMed ID: 32872816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems.
    Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL
    Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled and Synchronization Models of Rhythmic Arm Movement in Planar Plane.
    Machmudah A; Dutykh D; Parman S
    Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map.
    Mugnaine M; Sales MR; Szezech JD; Viana RL
    Phys Rev E; 2022 Sep; 106(3-1):034203. PubMed ID: 36266788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of coupled modified Rössler oscillators: The role of nonisochronicity parameter.
    Ramya C; Gopal R; Suresh R; Chandrasekar VK
    Chaos; 2021 May; 31(5):053113. PubMed ID: 34240955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is there chaos in the brain? II. Experimental evidence and related models.
    Korn H; Faure P
    C R Biol; 2003 Sep; 326(9):787-840. PubMed ID: 14694754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistability and the control of complexity.
    Feudel U; Grebogi C
    Chaos; 1997 Dec; 7(4):597-604. PubMed ID: 12779685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistability and chaos in SEIRS epidemic model with a periodic time-dependent transmission rate.
    Brugnago EL; Gabrick EC; Iarosz KC; Szezech JD; Viana RL; Batista AM; Caldas IL
    Chaos; 2023 Dec; 33(12):. PubMed ID: 38085232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.