These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35105427)

  • 1. Variations on Ernsting's Post-Decompression Hypoxia Prevention Model.
    Dart TS; Morse BG
    Aerosp Med Hum Perform; 2022 Feb; 93(2):99-105. PubMed ID: 35105427
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiological consequences of rapid or prolonged aircraft decompression: evaluation using a human respiratory model.
    Wolf M
    Aviat Space Environ Med; 2014 Apr; 85(4):466-72. PubMed ID: 24754211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cabin Pressure Altitude Effect on Acceleration Atelectasis After Agile Flight Breathing 60% Oxygen.
    Tank H; Kennedy G; Pollock R; Hodkinson P; Sheppard-Hickey RA; Woolford J; Green NDC; Stevenson A
    Aerosp Med Hum Perform; 2023 Jan; 94(1):3-10. PubMed ID: 36757237
    [No Abstract]   [Full Text] [Related]  

  • 4. Relative Severity of Human Performance Decrements Recorded in Rapid vs. Gradual Decompression.
    Beer J; Mojica AJ; Blacker KJ; Dart TS; Morse BG; Sherman PM
    Aerosp Med Hum Perform; 2024 Jul; 95(7):353-366. PubMed ID: 38915160
    [No Abstract]   [Full Text] [Related]  

  • 5. Pulmonary Effects from a Simulated Long-Duration Mission in a Confined Cockpit.
    Beer J; Dart TS; Fischer J; Kisner J
    Aerosp Med Hum Perform; 2017 Oct; 88(10):952-957. PubMed ID: 28923145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid decompression of a transport aircraft cabin: protection against hypoxia.
    Marotte H; Toure C; Clere JM; Vieillefond H
    Aviat Space Environ Med; 1990 Jan; 61(1):21-7. PubMed ID: 2302122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-flight hypoxia incidents in military aircraft: causes and implications for training.
    Cable GG
    Aviat Space Environ Med; 2003 Feb; 74(2):169-72. PubMed ID: 12602449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia-Like Events in UK Typhoon Aircraft from 2008 to 2017.
    Connolly DM; Lee VM; McGown AS; Green NDC
    Aerosp Med Hum Perform; 2021 Apr; 92(4):257-264. PubMed ID: 33752789
    [No Abstract]   [Full Text] [Related]  

  • 9. Lung volumes, pulmonary ventilation, and hypoxia following rapid decompression to 60,000 ft (18,288 m).
    Connolly DM; D'Oyly TJ; McGown AS; Lee VM
    Aviat Space Environ Med; 2013 Jun; 84(6):551-9. PubMed ID: 23745282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of hypoxia--acceptable compromises.
    Ernsting J
    Aviat Space Environ Med; 1978 Mar; 49(3):495-502. PubMed ID: 637810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lingering Altitude Effects During Piloting and Navigation in a Synthetic Cockpit.
    Beer J; Morse B; Dart T; Adler S; Sherman P
    Aerosp Med Hum Perform; 2023 Mar; 94(3):135-141. PubMed ID: 36829284
    [No Abstract]   [Full Text] [Related]  

  • 12. Prevention of decompression sickness in current and future fighter aircraft.
    Webb JT; Balldin UI; Pilmanis AA
    Aviat Space Environ Med; 1993 Nov; 64(11):1048-50. PubMed ID: 8280039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia Hangover and Flight Performance After Normobaric Hypoxia Exposure in a Hawk Simulator.
    Varis N; Parkkola KI; Leino TK
    Aerosp Med Hum Perform; 2019 Aug; 90(8):720-724. PubMed ID: 31331422
    [No Abstract]   [Full Text] [Related]  

  • 14. Explosive Decompression with Resultant Air Gas Embolism in a Fourth Generation Fighter at Ground Level.
    Zhang JX; Berry JR; Beckstrand DP
    Aerosp Med Hum Perform; 2016; 87(11):963-967. PubMed ID: 27779957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance during positive pressure breathing after rapid decompression up to 72,000 feet.
    Lindeis AE; Fraser WD; Fowler B
    Hum Factors; 1997 Mar; 39(1):102-10. PubMed ID: 9302882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple E-2D Hawkeye Aircrew with Neurocognitive Symptoms During a Single Over-Pressurization Episode.
    Ko SY; Rice GM
    Aerosp Med Hum Perform; 2020 Dec; 91(12):970-974. PubMed ID: 33243342
    [No Abstract]   [Full Text] [Related]  

  • 17. Predicting the need for supplemental oxygen during airline flight in patients with chronic pulmonary disease: a comparison of predictive equations and altitude simulation.
    Bradi AC; Faughnan ME; Stanbrook MB; Deschenes-Leek E; Chapman KR
    Can Respir J; 2009; 16(4):119-24. PubMed ID: 19707606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of using long breathing hoses upon mask pressure.
    Cooke JP; Olson RM; Maloney TM
    Aviat Space Environ Med; 1978 Feb; 49(2):365-70. PubMed ID: 637791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure breathing in fighter aircraft for G accelerations and loss of cabin pressurization at altitude--a brief review.
    Lauritzsen LP; Pfitzner J
    Can J Anaesth; 2003 Apr; 50(4):415-9. PubMed ID: 12670822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental factors in helicopter operations.
    Thornton R; Vyrnwy-Jones P
    J R Army Med Corps; 1984 Oct; 130(3):157-61. PubMed ID: 6527345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.