BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35105899)

  • 1. Inhibition of base editors with anti-deaminases derived from viruses.
    Liu Z; Chen S; Lai L; Li Z
    Nat Commun; 2022 Feb; 13(1):597. PubMed ID: 35105899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
    Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D
    Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved plant cytosine base editors with high editing activity, purity, and specificity.
    Ren Q; Sretenovic S; Liu G; Zhong Z; Wang J; Huang L; Tang X; Guo Y; Liu L; Wu Y; Zhou J; Zhao Y; Yang H; He Y; Liu S; Yin D; Mayorga R; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2021 Oct; 19(10):2052-2068. PubMed ID: 34042262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved cytosine base editors generated from TadA variants.
    Lam DK; Feliciano PR; Arif A; Bohnuud T; Fernandez TP; Gehrke JM; Grayson P; Lee KD; Ortega MA; Sawyer C; Schwaegerle ND; Peraro L; Young L; Lee SJ; Ciaramella G; Gaudelli NM
    Nat Biotechnol; 2023 May; 41(5):686-697. PubMed ID: 36624149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR DNA base editors with reduced RNA off-target and self-editing activities.
    Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK
    Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MagnEdit-interacting factors that recruit DNA-editing enzymes to single base targets.
    McCann JL; Salamango DJ; Law EK; Brown WL; Harris RS
    Life Sci Alliance; 2020 Apr; 3(4):. PubMed ID: 32094150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide.
    Liu Z; Chen S; Jia Y; Shan H; Chen M; Song Y; Lai L; Li Z
    Sci China Life Sci; 2021 Aug; 64(8):1355-1367. PubMed ID: 33420918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE.
    Zhou J; Liu Y; Wei Y; Zheng S; Gou S; Chen T; Yang Y; Lan T; Chen M; Liao Y; Zhang Q; Tang C; Liu Y; Wu Y; Peng X; Gao M; Wang J; Zhang K; Lai L; Zou Q
    Mol Ther; 2022 Jul; 30(7):2443-2451. PubMed ID: 35443934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TadA reprogramming to generate potent miniature base editors with high precision.
    Zhang S; Song L; Yuan B; Zhang C; Cao J; Chen J; Qiu J; Tai Y; Chen J; Qiu Z; Zhao XM; Cheng TL
    Nat Commun; 2023 Jan; 14(1):413. PubMed ID: 36702845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors.
    Doman JL; Raguram A; Newby GA; Liu DR
    Nat Biotechnol; 2020 May; 38(5):620-628. PubMed ID: 32042165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A split cytosine deaminase architecture enables robust inducible base editing.
    Long J; Liu N; Tang W; Xie L; Qin F; Zhou L; Tao R; Wang Y; Hu Y; Jiao Y; Li L; Jiang L; Qu J; Chen Q; Yao S
    FASEB J; 2021 Dec; 35(12):e22045. PubMed ID: 34797942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity.
    Jin S; Fei H; Zhu Z; Luo Y; Liu J; Gao S; Zhang F; Chen YH; Wang Y; Gao C
    Mol Cell; 2020 Sep; 79(5):728-740.e6. PubMed ID: 32721385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of deaminase functions by structure-based protein clustering.
    Huang J; Lin Q; Fei H; He Z; Xu H; Li Y; Qu K; Han P; Gao Q; Li B; Liu G; Zhang L; Hu J; Zhang R; Zuo E; Luo Y; Ran Y; Qiu JL; Zhao KT; Gao C
    Cell; 2023 Jul; 186(15):3182-3195.e14. PubMed ID: 37379837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of cytosine base editors with DNA damage minimization and editing scope diversification.
    Yuan B; Zhang S; Song L; Chen J; Cao J; Qiu J; Qiu Z; Chen J; Zhao XM; Cheng TL
    Nucleic Acids Res; 2023 Nov; 51(20):e105. PubMed ID: 37843111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.