These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35106459)

  • 41. Computational methods and challenges for large-scale circuit mapping.
    Helmstaedter M; Mitra PP
    Curr Opin Neurobiol; 2012 Feb; 22(1):162-9. PubMed ID: 22221862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain.
    Feng L; Kwon O; Lee B; Oh WC; Kim J
    Nat Protoc; 2014 Oct; 9(10):2425-37. PubMed ID: 25232938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy.
    Silvestri L; Bria A; Costantini I; Sacconi L; Peng H; Iannello G; Pavone FS
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24145191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-Dimensional Structure of Dendritic Spines Revealed by Volume Electron Microscopy Techniques.
    Parajuli LK; Koike M
    Front Neuroanat; 2021; 15():627368. PubMed ID: 34135737
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular genetics and imaging technologies for circuit-based neuroanatomy.
    Arenkiel BR; Ehlers MD
    Nature; 2009 Oct; 461(7266):900-7. PubMed ID: 19829369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlative microscopy of densely labeled projection neurons using neural tracers.
    Oberti D; Kirschmann MA; Hahnloser RH
    Front Neuroanat; 2010; 4():24. PubMed ID: 20676237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electron Microscopy Reconstruction of Brain Structure Using Sparse Representations Over Learned Dictionaries.
    Tao Hu ; Nunez-Iglesias J; Vitaladevuni S; Scheffer L; Shan Xu ; Bolorizadeh M; Hess H; Fetter R; Chklovskii DB
    IEEE Trans Med Imaging; 2013 Dec; 32(12):2179-88. PubMed ID: 23925366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatio-temporal parameters for optical probing of neuronal activity.
    Daria VR; Castañares ML; Bachor HA
    Biophys Rev; 2021 Feb; 13(1):13-33. PubMed ID: 33747244
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain.
    Newmaster KT; Kronman FA; Wu YT; Kim Y
    Front Neuroanat; 2021; 15():787601. PubMed ID: 35095432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Volume electron microscopy for neuronal circuit reconstruction.
    Briggman KL; Bock DD
    Curr Opin Neurobiol; 2012 Feb; 22(1):154-61. PubMed ID: 22119321
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical interrogation of multi-scale neuronal plasticity underlying behavioral learning.
    Tsutsumi S; Hayashi-Takagi A
    Curr Opin Neurobiol; 2021 Apr; 67():8-15. PubMed ID: 32768886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network.
    Friedmann D; Pun A; Adams EL; Lui JH; Kebschull JM; Grutzner SM; Castagnola C; Tessier-Lavigne M; Luo L
    Proc Natl Acad Sci U S A; 2020 May; 117(20):11068-11075. PubMed ID: 32358193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ScaleS: an optical clearing palette for biological imaging.
    Hama H; Hioki H; Namiki K; Hoshida T; Kurokawa H; Ishidate F; Kaneko T; Akagi T; Saito T; Saido T; Miyawaki A
    Nat Neurosci; 2015 Oct; 18(10):1518-29. PubMed ID: 26368944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers.
    Mishchenko Y
    PLoS One; 2010 Jan; 5(1):e8853. PubMed ID: 20107507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
    Zolnik TA; Sha F; Johenning FW; Schreiter ER; Looger LL; Larkum ME; Sachdev RN
    J Physiol; 2017 Mar; 595(5):1465-1477. PubMed ID: 27861906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brain-mapping projects using the common marmoset.
    Okano H; Mitra P
    Neurosci Res; 2015 Apr; 93():3-7. PubMed ID: 25264372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scaling Principles of Distributed Circuits.
    Srinivasan S; Stevens CF
    Curr Biol; 2019 Aug; 29(15):2533-2540.e7. PubMed ID: 31327712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EyeCi: Optical clearing and imaging of immunolabeled mouse eyes using light-sheet fluorescence microscopy.
    Henning Y; Osadnik C; Malkemper EP
    Exp Eye Res; 2019 Mar; 180():137-145. PubMed ID: 30578790
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.
    Nakayama K; Kiyosue K; Taguchi T
    J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-sheet fluorescence expansion microscopy: fast mapping of neural circuits at super resolution.
    Bürgers J; Pavlova I; Rodriguez-Gatica JE; Henneberger C; Oeller M; Ruland JA; Siebrasse JP; Kubitscheck U; Schwarz MK
    Neurophotonics; 2019 Jan; 6(1):015005. PubMed ID: 30796881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.