These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35106702)

  • 41. NAT10 Drives Cisplatin Chemoresistance by Enhancing ac4C-Associated DNA Repair in Bladder Cancer.
    Xie R; Cheng L; Huang M; Huang L; Chen Z; Zhang Q; Li H; Lu J; Wang H; Zhou Q; Huang J; Chen X; Lin T
    Cancer Res; 2023 May; 83(10):1666-1683. PubMed ID: 36939377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PseUdeep: RNA Pseudouridine Site Identification with Deep Learning Algorithm.
    Zhuang J; Liu D; Lin M; Qiu W; Liu J; Chen S
    Front Genet; 2021; 12():773882. PubMed ID: 34868261
    [No Abstract]   [Full Text] [Related]  

  • 43. PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences.
    Li Y; Lyu J; Wu Y; Liu Y; Huang G
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LDNFSGB: prediction of long non-coding rna and disease association using network feature similarity and gradient boosting.
    Zhang Y; Ye F; Xiong D; Gao X
    BMC Bioinformatics; 2020 Sep; 21(1):377. PubMed ID: 32883200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical Context-Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation.
    Afzal M; Alam F; Malik KM; Malik GM
    J Med Internet Res; 2020 Oct; 22(10):e19810. PubMed ID: 33095174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. "iSS-Hyb-mRMR": Identification of splicing sites using hybrid space of pseudo trinucleotide and pseudo tetranucleotide composition.
    Iqbal M; Hayat M
    Comput Methods Programs Biomed; 2016 May; 128():1-11. PubMed ID: 27040827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNN-m6A: A Cross-Species Method for Identifying RNA N6-Methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion.
    Zhang L; Qin X; Liu M; Xu Z; Liu G
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33670877
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Transfer Learning-Based Approach for Lysine Propionylation Prediction.
    Li A; Deng Y; Tan Y; Chen M
    Front Physiol; 2021; 12():658633. PubMed ID: 33967828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epitranscriptomic N4-Acetylcytidine Profiling in CD4
    Guo G; Shi X; Wang H; Ye L; Tong X; Yan K; Ding N; Chen C; Zhang H; Xue X
    Front Cell Dev Biol; 2020; 8():842. PubMed ID: 32984334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. IdentPMP: identification of moonlighting proteins in plants using sequence-based learning models.
    Liu X; Shen Y; Zhang Y; Liu F; Ma Z; Yue Z; Yue Y
    PeerJ; 2021; 9():e11900. PubMed ID: 34434652
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CD-NuSS: A Web Server for the Automated Secondary Structural Characterization of the Nucleic Acids from Circular Dichroism Spectra Using Extreme Gradient Boosting Decision-Tree, Neural Network and Kohonen Algorithms.
    Sathyaseelan C; Vijayakumar V; Rathinavelan T
    J Mol Biol; 2021 May; 433(11):166629. PubMed ID: 32841657
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites.
    Wang P; Zhang G; Yu ZG; Huang G
    Front Genet; 2021; 12():752732. PubMed ID: 34764983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.
    Hoar D; Lee PQ; Guida A; Patterson S; Bowen CV; Merrimen J; Wang C; Rendon R; Beyea SD; Clarke SE
    Comput Methods Programs Biomed; 2021 Oct; 210():106375. PubMed ID: 34500139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA sequences performs as natural language processing by exploiting deep learning algorithm for the identification of N4-methylcytosine.
    Wahab A; Tayara H; Xuan Z; Chong KT
    Sci Rep; 2021 Jan; 11(1):212. PubMed ID: 33420191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying Sigma70 Promoters with Novel Pseudo Nucleotide Composition.
    Lin H; Liang ZY; Tang H; Chen W
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1316-1321. PubMed ID: 28186907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. iRNAD: a computational tool for identifying D modification sites in RNA sequence.
    Xu ZC; Feng PM; Yang H; Qiu WR; Chen W; Lin H
    Bioinformatics; 2019 Dec; 35(23):4922-4929. PubMed ID: 31077296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Promising Preoperative Prediction Model for Microvascular Invasion in Hepatocellular Carcinoma Based on an Extreme Gradient Boosting Algorithm.
    Liu W; Zhang L; Xin Z; Zhang H; You L; Bai L; Zhou J; Ying B
    Front Oncol; 2022; 12():852736. PubMed ID: 35311094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Epitranscriptome machinery in Trypanosomatids: New players on the table?
    Maran SR; de Lemos Padilha Pitta JL; Dos Santos Vasconcelos CR; McDermott SM; Rezende AM; Silvio Moretti N
    Mol Microbiol; 2021 May; 115(5):942-958. PubMed ID: 33513291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy.
    Xie R; Li J; Wang J; Dai W; Leier A; Marquez-Lago TT; Akutsu T; Lithgow T; Song J; Zhang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32599617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.