These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35106841)

  • 21. Investigations into the GDF8 g+6723G-A polymorphism in New Zealand Texel sheep.
    Johnson PL; Dodds KG; Bain WE; Greer GJ; McLean NJ; McLaren RJ; Galloway SM; van Stijn TC; McEwan JC
    J Anim Sci; 2009 Jun; 87(6):1856-64. PubMed ID: 19251921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep.
    Armstrong E; Ciappesoni G; Iriarte W; Da Silva C; Macedo F; Navajas EA; Brito G; San Julián R; Gimeno D; Postiglioni A
    Meat Sci; 2018 Nov; 145():202-208. PubMed ID: 29982074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic parameters for growth traits for a composite terminal sire breed of sheep.
    Mousa E; Van Vleck LD; Leymaster KA
    J Anim Sci; 1999 Jul; 77(7):1659-65. PubMed ID: 10438010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Texel- and Suffolk-sired crossbred lambs for survival, growth, and compositional traits.
    Leymaster KA; Jenkins TG
    J Anim Sci; 1993 Apr; 71(4):859-69. PubMed ID: 8478288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variance components for direct and maternal effects on body weights of Katahdin lambs.
    Ngere L; Burke JM; Notter DR; Morgan JLM
    J Anim Sci; 2017 Aug; 95(8):3396-3405. PubMed ID: 28805892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of maternal and terminal sheep breeding objectives using Irish field data.
    McHugh N; McDermott K; Bohan A; Farrell LJ; Herron J; Pabiou T
    Transl Anim Sci; 2022 Jul; 6(3):txac099. PubMed ID: 36000073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic (co)variance components for ewe productivity traits in Katahdin sheep.
    Vanimisetti HB; Notter DR; Kuehn LA
    J Anim Sci; 2007 Jan; 85(1):60-8. PubMed ID: 17179540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Derivation of a new lamb survival trait for the New Zealand sheep industry.
    Vanderick S; Auvray B; Newman SA; Dodds KG; Gengler N; Everett-Hincks JM
    J Anim Sci; 2015 Aug; 93(8):3765-72. PubMed ID: 26440155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationships between lamb carcass quality traits measured by X-ray computed tomography and current UK hill sheep breeding goals.
    Lambe NR; Conington J; Bishop SC; McLean KA; Bünger L; McLaren A; Simm G
    Animal; 2008 Jan; 2(1):36-43. PubMed ID: 22444961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of breeding objectives across countries with application to sheep indexes in New Zealand and Ireland.
    Santos BF; McHugh N; Byrne TJ; Berry DP; Amer PR
    J Anim Breed Genet; 2015 Apr; 132(2):144-54. PubMed ID: 25823839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between multiple-trait and random regression models for genetic evaluation of weight traits in Australian meat sheep.
    Paneru U; Moghaddar N; van der Werf J
    J Anim Sci; 2024 Jan; 102():. PubMed ID: 38334207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing the level of nutrition of twin-bearing ewes during mid to late pregnancy produces leaner prime lambs at slaughter.
    Knight MI; Butler KL; Slocombe LL; Linden NP; Raeside MC; Burnett VF; Ball AJ; McDonagh MB; Behrendt R
    Animal; 2020 Apr; 14(4):864-872. PubMed ID: 31610822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneous variances and genetics by environment interactions in genetic evaluation of crossbred lambs.
    Márquez GC; Haresign W; Davies MH; Roehe R; Bünger L; Simm G; Lewis RM
    Animal; 2015 Mar; 9(3):380-7. PubMed ID: 25407759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic relationships between carcass cut weights predicted from video image analysis and other performance traits in cattle.
    Pabiou T; Fikse WF; Amer PR; Cromie AR; Näsholm A; Berry DP
    Animal; 2012 Sep; 6(9):1389-97. PubMed ID: 22717237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of genetic merit for live weight and body condition score in dairy cows using routinely available linear type and carcass data.
    Berry DP; Evans RD; Kelleher MM
    J Dairy Sci; 2021 Jun; 104(6):6885-6896. PubMed ID: 33773797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic parameters for lamb birth weight, survival and death risk traits.
    Everett-Hincks JM; Mathias-Davis HC; Greer GJ; Auvray BA; Dodds KG
    J Anim Sci; 2014 Jul; 92(7):2885-95. PubMed ID: 24802039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The value of incorporating carcass trait phenotypes in terminal sire selection indexes to improve carcass weight and quality of heavy lambs.
    Massender E; Brito LF; Cánovas A; Baes CF; Kennedy D; Schenkel FS
    J Anim Breed Genet; 2021 Jan; 138(1):91-107. PubMed ID: 32529716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic parameters for ewe rearing performance.
    Everett-Hincks JM; Cullen NG
    J Anim Sci; 2009 Sep; 87(9):2753-8. PubMed ID: 19502504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic analysis of body weight and growth curve parameters in Muzaffarnagari sheep of India.
    Mandal A; Gayari I; Baneh H; Notter DR
    J Anim Breed Genet; 2024 Jul; 141(4):425-439. PubMed ID: 38288883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses to various selection protocols for lamb production in Rambouillet, Targhee, Columbia, and Polypay sheep.
    Ercanbrack SK; Knight AD
    J Anim Sci; 1998 May; 76(5):1311-25. PubMed ID: 9621937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.