BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35107125)

  • 1. Laminar-specific functional connectivity mapping with multi-slice line-scanning fMRI.
    Choi S; Zeng H; Chen Y; Sobczak F; Qian C; Yu X
    Cereb Cortex; 2022 Oct; 32(20):4492-4501. PubMed ID: 35107125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI.
    Choi S; Chen Y; Zeng H; Biswal B; Yu X
    J Cereb Blood Flow Metab; 2023 Jul; 43(7):1115-1129. PubMed ID: 36803280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
    Thompson GJ; Pan WJ; Magnuson ME; Jaeger D; Keilholz SD
    Neuroimage; 2014 Jan; 84():1018-31. PubMed ID: 24071524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat.
    Zhao F; Zhao T; Zhou L; Wu Q; Hu X
    Neuroimage; 2008 Jan; 39(1):248-60. PubMed ID: 17904868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1.
    Huber L; Handwerker DA; Jangraw DC; Chen G; Hall A; Stüber C; Gonzalez-Castillo J; Ivanov D; Marrett S; Guidi M; Goense J; Poser BA; Bandettini PA
    Neuron; 2017 Dec; 96(6):1253-1263.e7. PubMed ID: 29224727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The laminar pattern of resting state in human cerebral cortex.
    Egbert AR; Łojek E; Biswal B; Pluta A;
    Magn Reson Imaging; 2021 Feb; 76():8-16. PubMed ID: 33130056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets.
    Al Zoubi O; Misaki M; Tsuchiyagaito A; Zotev V; White E; Paulus M; Bodurka J
    Brain Connect; 2022 May; 12(4):348-361. PubMed ID: 34269609
    [No Abstract]   [Full Text] [Related]  

  • 11. Alpha-180 spin-echo based line-scanning method for high resolution laminar-specific fMRI.
    Choi S; Hike D; Pohmann R; Avdievich N; Gomez-Cid L; Man W; Scheffler K; Yu X
    bioRxiv; 2024 Jan; ():. PubMed ID: 37214920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminar fMRI: What can the time domain tell us?
    Petridou N; Siero JCW
    Neuroimage; 2019 Aug; 197():761-771. PubMed ID: 28736308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining laminar neuronal activity from BOLD fMRI using a generative model.
    Uludag K; Havlicek M
    Prog Neurobiol; 2021 Dec; 207():102055. PubMed ID: 33930519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.
    Kannurpatti SS; Sanganahalli BG; Herman P; Hyder F
    NMR Biomed; 2015 Nov; 28(11):1579-88. PubMed ID: 26439799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in resting state fMRI acquisitions for functional connectomics.
    Raimondo L; Oliveira ĹAF; Heij J; Priovoulos N; Kundu P; Leoni RF; van der Zwaag W
    Neuroimage; 2021 Nov; 243():118503. PubMed ID: 34479041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.