These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 35107250)
1. Metabolic Engineering of Xiao F; Lian J; Tu S; Xie L; Li J; Zhang F; Linhardt RJ; Huang H; Zhong W ACS Synth Biol; 2022 Feb; 11(2):800-811. PubMed ID: 35107250 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Engineering of Kang Y; Xiao K; Wang D; Peng Z; Luo R; Liu X; Hu L; Hu G ACS Synth Biol; 2024 Oct; 13(10):3378-3388. PubMed ID: 39267441 [TBL] [Abstract][Full Text] [Related]
3. Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331 [TBL] [Abstract][Full Text] [Related]
4. Efficient Production of Chlorogenic Acid in Wang L; Wang H; Chen J; Hu M; Shan X; Zhou J J Agric Food Chem; 2023 Oct; 71(41):15204-15212. PubMed ID: 37788431 [TBL] [Abstract][Full Text] [Related]
5. High-Level Biosynthesis of Chlorogenic Acid from Mixed Carbon Sources of Xylose and Glucose through a Rationally Refactored Pathway Network. Wang Y; Tan H; Wang Y; Qin JL; Zhao X; Di Y; Xie L; Wang Y; Zhao X; Li Z; Ma G; Jiang L; Liu B; Huang D J Agric Food Chem; 2024 Feb; 72(7):3633-3643. PubMed ID: 38330270 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Yin H; Hu T; Zhuang Y; Liu T Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241 [TBL] [Abstract][Full Text] [Related]
7. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related]
8. Systematic Metabolic Engineering of Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654 [TBL] [Abstract][Full Text] [Related]
9. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae. Tu S; Xiao F; Mei C; Li S; Qiao P; Huang Z; He Y; Gong Z; Zhong W Appl Microbiol Biotechnol; 2023 Jun; 107(12):3899-3909. PubMed ID: 37148336 [TBL] [Abstract][Full Text] [Related]
10. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Zhao Y; Zuo F; Shu Q; Yang X; Deng Y Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867 [TBL] [Abstract][Full Text] [Related]
12. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose. Lin C; Zhang X; Ji Z; Fan B; Chen Y; Wu Y; Gan Y; Li Z; Shang Y; Duan L; Wang F Biotechnol Lett; 2024 Aug; 46(4):615-626. PubMed ID: 38884886 [TBL] [Abstract][Full Text] [Related]
14. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. Gottardi M; Reifenrath M; Boles E; Tripp J FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489 [TBL] [Abstract][Full Text] [Related]
15. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
16. Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Jin Z; Wong A; Foo JL; Ng J; Cao YX; Chang MW; Yuan YJ Biotechnol Bioeng; 2016 Apr; 113(4):842-51. PubMed ID: 26461930 [TBL] [Abstract][Full Text] [Related]
17. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in Tang M; Xu X; Liu Y; Li J; Du G; Lv X; Liu L ACS Synth Biol; 2024 Jun; 13(6):1798-1808. PubMed ID: 38748665 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast. Wang Z; Zhou Y; Wang Y; Yan X ACS Synth Biol; 2023 Oct; 12(10):2922-2933. PubMed ID: 37767718 [TBL] [Abstract][Full Text] [Related]
19. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae. Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692 [TBL] [Abstract][Full Text] [Related]
20. Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Wang C; Su X; Sun M; Zhang M; Wu J; Xing J; Wang Y; Xue J; Liu X; Sun W; Chen S Microb Cell Fact; 2019 May; 18(1):95. PubMed ID: 31138208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]