These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 35107332)
1. Genomic Features and Pervasive Negative Selection in Peng M; Wang D; Lui LM; Nielsen T; Tian R; Kempher ML; Tao X; Pan C; Chakraborty R; Deutschbauer AM; Thorgersen MP; Adams MWW; Fields MW; Hazen TC; Arkin AP; Zhou A; Zhou J Microbiol Spectr; 2022 Feb; 10(1):e0259121. PubMed ID: 35107332 [No Abstract] [Full Text] [Related]
2. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community. Hemme CL; Green SJ; Rishishwar L; Prakash O; Pettenato A; Chakraborty R; Deutschbauer AM; Van Nostrand JD; Wu L; He Z; Jordan IK; Hazen TC; Arkin AP; Kostka JE; Zhou J mBio; 2016 Apr; 7(2):e02234-15. PubMed ID: 27048805 [TBL] [Abstract][Full Text] [Related]
3. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Prakash O; Green SJ; Jasrotia P; Overholt WA; Canion A; Watson DB; Brooks SC; Kostka JE Int J Syst Evol Microbiol; 2012 Oct; 62(Pt 10):2457-2462. PubMed ID: 22140175 [TBL] [Abstract][Full Text] [Related]
4. Nitrate-Utilizing Microorganisms Resistant to Multiple Metals from the Heavily Contaminated Oak Ridge Reservation. Thorgersen MP; Ge X; Poole FL; Price MN; Arkin AP; Adams MWW Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31253673 [TBL] [Abstract][Full Text] [Related]
5. Development of a Markerless Deletion Mutagenesis System in Nitrate-Reducing Bacterium Rhodanobacter denitrificans. Tao X; Zhou A; Kempher ML; Liu J; Peng M; Li Y; Michael JP; Chakraborty R; Deutschbauer AM; Arkin AP; Zhou J Appl Environ Microbiol; 2022 Jul; 88(14):e0040122. PubMed ID: 35737807 [No Abstract] [Full Text] [Related]
6. The selective pressures on the microbial community in a metal-contaminated aquifer. Carlson HK; Price MN; Callaghan M; Aaring A; Chakraborty R; Liu H; Kuehl JV; Arkin AP; Deutschbauer AM ISME J; 2019 Apr; 13(4):937-949. PubMed ID: 30523276 [TBL] [Abstract][Full Text] [Related]
7. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Green SJ; Prakash O; Gihring TM; Akob DM; Jasrotia P; Jardine PM; Watson DB; Brown SD; Palumbo AV; Kostka JE Appl Environ Microbiol; 2010 May; 76(10):3244-54. PubMed ID: 20305024 [TBL] [Abstract][Full Text] [Related]
8. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Green SJ; Prakash O; Jasrotia P; Overholt WA; Cardenas E; Hubbard D; Tiedje JM; Watson DB; Schadt CW; Brooks SC; Kostka JE Appl Environ Microbiol; 2012 Feb; 78(4):1039-47. PubMed ID: 22179233 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. Chen M; Trotter VV; Walian PJ; Chen Y; Lopez R; Lui LM; Nielsen TN; Malana RG; Thorgersen MP; Hendrickson AJ; Carion H; Deutschbauer AM; Petzold CJ; Smith HJ; Arkin AP; Adams MWW; Fields MW; Chakraborty R ISME J; 2024 Jan; 18(1):. PubMed ID: 39113613 [TBL] [Abstract][Full Text] [Related]
10. Ecophysiological and genomic analyses of a representative isolate of highly abundant Bacillus cereus strains in contaminated subsurface sediments. Goff JL; Szink EG; Thorgersen MP; Putt AD; Fan Y; Lui LM; Nielsen TN; Hunt KA; Michael JP; Wang Y; Ning D; Fu Y; Van Nostrand JD; Poole FL; Chandonia JM; Hazen TC; Stahl DA; Zhou J; Arkin AP; Adams MWW Environ Microbiol; 2022 Nov; 24(11):5546-5560. PubMed ID: 36053980 [TBL] [Abstract][Full Text] [Related]
11. Natural Recombination among Type I Restriction-Modification Systems Creates Diverse Genomic Methylation Patterns among Xylella fastidiosa Strains. O'Leary ML; Burbank LP Appl Environ Microbiol; 2023 Jan; 89(1):e0187322. PubMed ID: 36598481 [TBL] [Abstract][Full Text] [Related]
12. Comparative genome analyses of five Ragab W; Kawato S; Nozaki R; Kondo H; Hirono I Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35171089 [No Abstract] [Full Text] [Related]
13. Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. De Clercq D; Van Trappen S; Cleenwerck I; Ceustermans A; Swings J; Coosemans J; Ryckeboer J Int J Syst Evol Microbiol; 2006 Aug; 56(Pt 8):1755-1759. PubMed ID: 16902003 [TBL] [Abstract][Full Text] [Related]
15. Rhodanobacter ginsengiterrae sp. nov., an antagonistic bacterium against root rot fungal pathogen Fusarium solani, isolated from ginseng rhizospheric soil. Huo Y; Kang JP; Park JK; Li J; Chen L; Yang DC Arch Microbiol; 2018 Dec; 200(10):1457-1463. PubMed ID: 30116848 [TBL] [Abstract][Full Text] [Related]
16. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater. Cho K; Zholi A; Frabutt D; Flood M; Floyd D; Tiquia SM Environ Technol; 2012; 33(13-15):1629-40. PubMed ID: 22988623 [TBL] [Abstract][Full Text] [Related]
17. Complete genome sequencing and comparative genomic analyses of Bacillus sp. S3, a novel hyper Sb(III)-oxidizing bacterium. Li J; Gu T; Li L; Wu X; Shen L; Yu R; Liu Y; Qiu G; Zeng W BMC Microbiol; 2020 May; 20(1):106. PubMed ID: 32354325 [TBL] [Abstract][Full Text] [Related]
18. Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. Weon HY; Kim BY; Hong SB; Jeon YA; Kwon SW; Go SJ; Koo BS Int J Syst Evol Microbiol; 2007 Dec; 57(Pt 12):2810-2813. PubMed ID: 18048729 [TBL] [Abstract][Full Text] [Related]
19. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Prakash O; Gihring TM; Dalton DD; Chin KJ; Green SJ; Akob DM; Wanger G; Kostka JE Int J Syst Evol Microbiol; 2010 Mar; 60(Pt 3):546-553. PubMed ID: 19654355 [TBL] [Abstract][Full Text] [Related]