These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 35107442)

  • 61. Strategies for design of improved biocatalysts for industrial applications.
    Madhavan A; Sindhu R; Binod P; Sukumaran RK; Pandey A
    Bioresour Technol; 2017 Dec; 245(Pt B):1304-1313. PubMed ID: 28533064
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioengineering oligomerization and monomerization of enzymes: learning from natural evolution to matching the demands for industrial applications.
    Liu H; Cao M; Wang Y; Lv B; Li C
    Crit Rev Biotechnol; 2020 Mar; 40(2):231-246. PubMed ID: 31914816
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design.
    Rajakumara E; Abhishek S; Nitin K; Saniya D; Bajaj P; Schwaneberg U; Davari MD
    ACS Chem Biol; 2022 Feb; 17(2):266-280. PubMed ID: 35041385
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives.
    Wójcik M; Telzerow A; Quax WJ; Boersma YL
    Int J Mol Sci; 2015 Oct; 16(10):24918-45. PubMed ID: 26492240
    [TBL] [Abstract][Full Text] [Related]  

  • 65. White biotechnology: State of the art strategies for the development of biocatalysts for biorefining.
    Heux S; Meynial-Salles I; O'Donohue MJ; Dumon C
    Biotechnol Adv; 2015 Dec; 33(8):1653-70. PubMed ID: 26303096
    [TBL] [Abstract][Full Text] [Related]  

  • 66. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering.
    Gantz M; Mathis SV; Nintzel FEH; Lio P; Hollfelder F
    Faraday Discuss; 2024 Aug; ():. PubMed ID: 39133073
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Empowering Protein Engineering through Recombination of Beneficial Substitutions.
    Wang X; Li A; Li X; Cui H
    Chemistry; 2024 Mar; 30(16):e202303889. PubMed ID: 38288640
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Advances of high-throughput screening system in reengineering of biological entities].
    Yang J; Su X; Zhu L
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2197-2210. PubMed ID: 34327888
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Machine learning to predict continuous protein properties from binary cell sorting data and map unseen sequence space.
    Case M; Smith M; Vinh J; Thurber G
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2311726121. PubMed ID: 38451939
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enzyme (re)design: lessons from natural evolution and computation.
    Gerlt JA; Babbitt PC
    Curr Opin Chem Biol; 2009 Feb; 13(1):10-8. PubMed ID: 19237310
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Protein engineering: from directed evolution to computational design].
    Qu G; Zhu T; Jiang Y; Wu B; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1843-1856. PubMed ID: 31668033
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
    Jacques P; Béchet M; Bigan M; Caly D; Chataigné G; Coutte F; Flahaut C; Heuson E; Leclère V; Lecouturier D; Phalip V; Ravallec R; Dhulster P; Froidevaux R
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):161-180. PubMed ID: 27738757
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids.
    Zhu HQ; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2021 Nov; 37(12):213. PubMed ID: 34741210
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enzyme engineering: Reshaping the biocatalytic functions.
    Ali M; Ishqi HM; Husain Q
    Biotechnol Bioeng; 2020 Jun; 117(6):1877-1894. PubMed ID: 32159220
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ACIDES: on-line monitoring of forward genetic screens for protein engineering.
    Nemoto T; Ocari T; Planul A; Tekinsoy M; Zin EA; Dalkara D; Ferrari U
    Nat Commun; 2023 Dec; 14(1):8504. PubMed ID: 38148337
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthetic metabolism: metabolic engineering meets enzyme design.
    Erb TJ; Jones PR; Bar-Even A
    Curr Opin Chem Biol; 2017 Apr; 37():56-62. PubMed ID: 28152442
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protein Engineering: Past, Present, and Future.
    Lutz S; Iamurri SM
    Methods Mol Biol; 2018; 1685():1-12. PubMed ID: 29086300
    [TBL] [Abstract][Full Text] [Related]  

  • 80. nanoDSF as screening tool for enzyme libraries and biotechnology development.
    Magnusson AO; Szekrenyi A; Joosten HJ; Finnigan J; Charnock S; Fessner WD
    FEBS J; 2019 Jan; 286(1):184-204. PubMed ID: 30414312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.