These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35107446)

  • 21. Materials Approaches for Improving Electrochemical Sensor Performance.
    Beaver K; Dantanarayana A; Minteer SD
    J Phys Chem B; 2021 Nov; 125(43):11820-11834. PubMed ID: 34677956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesoporous materials and electrochemistry.
    Walcarius A
    Chem Soc Rev; 2013 May; 42(9):4098-140. PubMed ID: 23334166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale production of nanographene sheets with a controlled mesoporous architecture as high-performance electrochemical electrode materials.
    Zhang H; Zhang X; Sun X; Zhang D; Lin H; Wang C; Wang H; Ma Y
    ChemSusChem; 2013 Jun; 6(6):1084-90. PubMed ID: 23650181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new electrochemical sensing platform based on HgS/graphene composite deposited on the glassy carbon electrode for selective and sensitive determination of propranolol.
    Ahmadi-Kashani M; Dehghani H
    J Pharm Biomed Anal; 2021 Feb; 194():113653. PubMed ID: 33303269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microneedle-based transdermal sensor for on-chip potentiometric determination of K(+).
    Miller PR; Xiao X; Brener I; Burckel DB; Narayan R; Polsky R
    Adv Healthc Mater; 2014 Jun; 3(6):876-81. PubMed ID: 24376147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021).
    Fu L; Mao S; Chen F; Zhao S; Su W; Lai G; Yu A; Lin CT
    Chemosphere; 2022 Jun; 297():134127. PubMed ID: 35240147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C
    Zhang L; Liu C; Wang Q; Wang X; Wang S
    Mikrochim Acta; 2020 Jan; 187(2):149. PubMed ID: 31989275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coating silver metal-organic frameworks onto nitrogen-doped porous carbons for the electrochemical sensing of cysteine.
    Zhai X; Li S; Chen X; Hua Y; Wang H
    Mikrochim Acta; 2020 Aug; 187(9):493. PubMed ID: 32770362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-organic frameworks for chemical sensing devices.
    Olorunyomi JF; Geh ST; Caruso RA; Doherty CM
    Mater Horiz; 2021 Aug; 8(9):2387-2419. PubMed ID: 34870296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces.
    Zambrano AC; Loiola LMD; Bukhamsin A; Gorecki R; Harrison G; Mani V; Fatayer S; Nunes SP; Salama KN
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4408-4419. PubMed ID: 38231564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.
    He W; Sun Y; Xi J; Abdurhman AA; Ren J; Duan H
    Anal Chim Acta; 2016 Jan; 903():61-8. PubMed ID: 26709299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells.
    Qiu HJ; Guan Y; Luo P; Wang Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):85-95. PubMed ID: 26711357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies.
    Riaz MA; Chen Y
    Nanoscale Horiz; 2022 May; 7(5):463-479. PubMed ID: 35289828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme-Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications.
    Fritea L; Tertis M; Sandulescu R; Cristea C
    Methods Enzymol; 2018; 609():293-333. PubMed ID: 30244795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Organic Framework-Based Sensors for Environmental Contaminant Sensing.
    Fang X; Zong B; Mao S
    Nanomicro Lett; 2018; 10(4):64. PubMed ID: 30393712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomass-derived carbon nanomaterials for sensor applications.
    Malode SJ; Shanbhag MM; Kumari R; Dkhar DS; Chandra P; Shetti NP
    J Pharm Biomed Anal; 2023 Jan; 222():115102. PubMed ID: 36283325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical porous microspheres of the Co
    Yang M; Jeong JM; Lee KG; Kim DH; Lee SJ; Choi BG
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):612-619. PubMed ID: 26852829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes.
    Bauer M; Wunderlich L; Weinzierl F; Lei Y; Duerkop A; Alshareef HN; Baeumner AJ
    Anal Bioanal Chem; 2021 Jan; 413(3):763-777. PubMed ID: 32989512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite Graphene-Containing Porous Materials from Carbon for Capacitive Deionization of Water.
    Bakhia T; Khamizov RK; Bavizhev ZR; Bavizhev MD; Konov MA; Kozlov DA; Tikhonova SA; Maslakov KI; Ashurov MS; Melezhik AV; Kurnosov DA; Burakov AE; Tkachev AG
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.