BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 35107464)

  • 1. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics and Surface-Enhanced Raman Spectroscopy: A Perfect Match for New Analytical Tools.
    Ochoa-Vazquez G; Kharisov B; Arizmendi-Morquecho A; Cario A; Aymonier C; Marre S; Lopez I
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):558-566. PubMed ID: 31545740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in droplet microfluidics for SERS and Raman analysis.
    Yue S; Fang J; Xu Z
    Biosens Bioelectron; 2022 Feb; 198():113822. PubMed ID: 34836710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy.
    Tycova A; Prikryl J; Foret F
    Electrophoresis; 2017 Aug; 38(16):1977-1987. PubMed ID: 28432695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of surface-enhanced Raman spectroscopy in pathological processes.
    Kozik A; Pavlova M; Petrov I; Bychkov V; Kim L; Dorozhko E; Cheng C; Rodriguez RD; Sheremet E
    Anal Chim Acta; 2021 Dec; 1187():338978. PubMed ID: 34753586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review.
    Naqvi SMZA; Zhang Y; Ahmed S; Abdulraheem MI; Hu J; Tahir MN; Raghavan V
    Talanta; 2022 Jan; 236():122823. PubMed ID: 34635213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.
    Fan M; Andrade GFS; Brolo AG
    Anal Chim Acta; 2020 Feb; 1097():1-29. PubMed ID: 31910948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments.
    Sun J; Gong L; Wang W; Gong Z; Wang D; Fan M
    Luminescence; 2020 Sep; 35(6):808-820. PubMed ID: 32160413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics.
    Andreou C; Hoonejani MR; Barmi MR; Moskovits M; Meinhart CD
    ACS Nano; 2013 Aug; 7(8):7157-64. PubMed ID: 23859441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing.
    Kant K; Abalde-Cela S
    Biosensors (Basel); 2018 Jun; 8(3):. PubMed ID: 29966248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopillar Filters for Surface-Enhanced Raman Spectroscopy.
    Durucan O; Rindzevicius T; Schmidt MS; Matteucci M; Boisen A
    ACS Sens; 2017 Oct; 2(10):1400-1404. PubMed ID: 28956441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Surface-Enhanced Raman Spectroscopy.
    Qiu Y; Kuang C; Liu X; Tang L
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis.
    Kho KW; Qing KZ; Shen ZX; Ahmad IB; Lim SS; Mhaisalkar S; White TJ; Watt F; Soo KC; Olivo M
    J Biomed Opt; 2008; 13(5):054026. PubMed ID: 19021406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms.
    Wen P; Yang F; Zhao H; Xu Y; Li S; Chen L
    Anal Chem; 2024 Jan; 96(4):1454-1461. PubMed ID: 38224075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system.
    Strehle KR; Cialla D; Rösch P; Henkel T; Köhler M; Popp J
    Anal Chem; 2007 Feb; 79(4):1542-7. PubMed ID: 17297953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection.
    Yu X; Park S; Lee S; Joo SW; Choo J
    Nano Converg; 2024 Apr; 11(1):17. PubMed ID: 38687445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A; Jana NR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):996-1003. PubMed ID: 25521159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.