BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35107593)

  • 1. Automated segmentation of magnetic resonance bone marrow signal: a feasibility study.
    von Brandis E; Jenssen HB; Avenarius DFM; Bjørnerud A; Flatø B; Tomterstad AH; Lilleby V; Rosendahl K; Sakinis T; Zadig PKK; Müller LO
    Pediatr Radiol; 2022 May; 52(6):1104-1114. PubMed ID: 35107593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Vertebral Body Segmentation Based on Deep Learning of Dixon Images for Bone Marrow Fat Fraction Quantification.
    Zhou J; Damasceno PF; Chachad R; Cheung JR; Ballatori A; Lotz JC; Lazar AA; Link TM; Fields AJ; Krug R
    Front Endocrinol (Lausanne); 2020; 11():612. PubMed ID: 32982989
    [No Abstract]   [Full Text] [Related]  

  • 3. Pediatric whole-body magnetic resonance imaging: comparison of STIR and T2 Dixon sequences in the detection and grading of high signal bone marrow changes.
    Zadig P; von Brandis E; Ording Müller LS; Tanturri de Horatio L; Rosendahl K; Avenarius DFM
    Eur Radiol; 2023 Jul; 33(7):5045-5053. PubMed ID: 36700955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated magnetic resonance image segmentation of the anterior cruciate ligament.
    Flannery SW; Kiapour AM; Edgar DJ; Murray MM; Fleming BC
    J Orthop Res; 2021 Apr; 39(4):831-840. PubMed ID: 33241856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study.
    Wennmann M; Neher P; Stanczyk N; Kahl KC; Kächele J; Weru V; Hielscher T; Grözinger M; Chmelik J; Zhang KS; Bauer F; Nonnenmacher T; Debic M; Sauer S; Rotkopf LT; Jauch A; Schlamp K; Mai EK; Weinhold N; Afat S; Horger M; Goldschmidt H; Schlemmer HP; Weber TF; Delorme S; Kurz FT; Maier-Hein K
    Invest Radiol; 2023 Apr; 58(4):273-282. PubMed ID: 36256790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI: A Multicentric Feasibility Study.
    Wennmann M; Klein A; Bauer F; Chmelik J; Grözinger M; Uhlenbrock C; Lochner J; Nonnenmacher T; Rotkopf LT; Sauer S; Hielscher T; Götz M; Floca RO; Neher P; Bonekamp D; Hillengass J; Kleesiek J; Weinhold N; Weber TF; Goldschmidt H; Delorme S; Maier-Hein K; Schlemmer HP
    Invest Radiol; 2022 Nov; 57(11):752-763. PubMed ID: 35640004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation.
    Rouvière O; Moldovan PC; Vlachomitrou A; Gouttard S; Riche B; Groth A; Rabotnikov M; Ruffion A; Colombel M; Crouzet S; Weese J; Rabilloud M
    Eur Radiol; 2022 May; 32(5):3248-3259. PubMed ID: 35001157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen.
    Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H
    Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.
    Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK
    J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation.
    Laukamp KR; Pennig L; Thiele F; Reimer R; Görtz L; Shakirin G; Zopfs D; Timmer M; Perkuhn M; Borggrefe J
    Clin Neuroradiol; 2021 Jun; 31(2):357-366. PubMed ID: 32060575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL; Han M; Kim LH; Koran ME; Chen LC; Lee EH; Wright J; Ramaswamy V; Lober RM; Taylor MD; Grant GA; Cheshier SH; Kestle JRW; Edwards MSB; Yeom KW
    J Neurosurg Pediatr; 2020 Dec; 27(2):131-138. PubMed ID: 33260138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-body MRI in children and adolescents: Can T2-weighted Dixon fat-only images replace standard T1-weighted images in the assessment of bone marrow?
    Tanturri de Horatio L; Zadig PK; von Brandis E; Ording Müller LS; Rosendahl K; Avenarius DFM
    Eur J Radiol; 2023 Sep; 166():110968. PubMed ID: 37478654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies.
    Kart T; Fischer M; Küstner T; Hepp T; Bamberg F; Winzeck S; Glocker B; Rueckert D; Gatidis S
    Invest Radiol; 2021 Jun; 56(6):401-408. PubMed ID: 33930003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional Neural Network for Fully Automated Cerebellar Volumetry in Children in Comparison to Manual Segmentation and Developmental Trajectory of Cerebellar Volumes.
    Sobootian DJ; Bronzlik P; Spineli LM; Becker LS; Winther HB; Bueltmann E
    Cerebellum; 2024 Jun; 23(3):1074-1085. PubMed ID: 37833550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI.
    Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S
    J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.