These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35107646)
1. Operational assessment tool for forest carbon dynamics for the United States: a new spatially explicit approach linking the LUCAS and CBM-CFS3 models. Sleeter BM; Frid L; Rayfield B; Daniel C; Zhu Z; Marvin DC Carbon Balance Manag; 2022 Feb; 17(1):1. PubMed ID: 35107646 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal dynamics of forest ecosystem carbon budget in Guizhou: customisation and application of the CBM-CFS3 model for China. Tang Y; Shao Q; Shi T; Lu Z; Wu G Carbon Balance Manag; 2022 Jul; 17(1):10. PubMed ID: 35779178 [TBL] [Abstract][Full Text] [Related]
3. Improving carbon monitoring and reporting in forests using spatially-explicit information. Boisvenue C; Smiley BP; White JC; Kurz WA; Wulder MA Carbon Balance Manag; 2016 Dec; 11(1):23. PubMed ID: 27853482 [TBL] [Abstract][Full Text] [Related]
4. A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Dugan AJ; Birdsey R; Mascorro VS; Magnan M; Smyth CE; Olguin M; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):13. PubMed ID: 30182168 [TBL] [Abstract][Full Text] [Related]
5. Critical land change information enhances the understanding of carbon balance in the United States. Liu J; Sleeter BM; Zhu Z; Loveland TR; Sohl T; Howard SM; Key CH; Hawbaker T; Liu S; Reed B; Cochrane MA; Heath LS; Jiang H; Price DT; Chen JM; Zhou D; Bliss NB; Wilson T; Sherba J; Zhu Q; Luo Y; Poulter B Glob Chang Biol; 2020 Jul; 26(7):3920-3929. PubMed ID: 32162439 [TBL] [Abstract][Full Text] [Related]
6. Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States. Sohl TL; Sayler KL; Bouchard MA; Reker RR; Friesz AM; Bennett SL; Sleeter BM; Sleeter RR; Wilson T; Soulard C; Knuppe M; Van Hofwegen T Ecol Appl; 2014 Jul; 24(5):1015-36. PubMed ID: 25154094 [TBL] [Abstract][Full Text] [Related]
7. Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates. Mascorro VS; Coops NC; Kurz WA; Olguín M Carbon Balance Manag; 2015 Dec; 10(1):30. PubMed ID: 26705411 [TBL] [Abstract][Full Text] [Related]
8. Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis. Pilli R; Grassi G; Kurz WA; Moris JV; Viñas RA Carbon Balance Manag; 2016 Dec; 11(1):20. PubMed ID: 27635153 [TBL] [Abstract][Full Text] [Related]
9. Effect of land-cover change on terrestrial carbon dynamics in the southern United States. Chen H; Tian H; Liu M; Melillo J; Pan S; Zhang C J Environ Qual; 2006; 35(4):1533-47. PubMed ID: 16825474 [TBL] [Abstract][Full Text] [Related]
10. Effects of 21st-century climate, land use, and disturbances on ecosystem carbon balance in California. Sleeter BM; Marvin DC; Cameron DR; Selmants PC; Westerling AL; Kreitler J; Daniel CJ; Liu J; Wilson TS Glob Chang Biol; 2019 Oct; 25(10):3334-3353. PubMed ID: 31066121 [TBL] [Abstract][Full Text] [Related]
11. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape. Smiley BP; Trofymow JA Carbon Balance Manag; 2017 Dec; 12(1):15. PubMed ID: 28707260 [TBL] [Abstract][Full Text] [Related]
12. A framework for assessing global change risks to forest carbon stocks in the United States. Woodall CW; Domke GM; Riley KL; Oswalt CM; Crocker SJ; Yohe GW PLoS One; 2013; 8(9):e73222. PubMed ID: 24039889 [TBL] [Abstract][Full Text] [Related]
14. Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Harris NL; Hagen SC; Saatchi SS; Pearson TRH; Woodall CW; Domke GM; Braswell BH; Walters BF; Brown S; Salas W; Fore A; Yu Y Carbon Balance Manag; 2016 Dec; 11(1):24. PubMed ID: 27909460 [TBL] [Abstract][Full Text] [Related]
15. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543 [TBL] [Abstract][Full Text] [Related]
16. Mind the gap: reconciling tropical forest carbon flux estimates from earth observation and national reporting requires transparency. Heinrich V; House J; Gibbs DA; Harris N; Herold M; Grassi G; Cantinho R; Rosan TM; Zimbres B; Shimbo JZ; Melo J; Hales T; Sitch S; Aragão LEOC Carbon Balance Manag; 2023 Nov; 18(1):22. PubMed ID: 37982938 [TBL] [Abstract][Full Text] [Related]
17. Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States. Smith JE; Billmire M; French NHF; Domke GM Carbon Balance Manag; 2024 Aug; 19(1):26. PubMed ID: 39143325 [TBL] [Abstract][Full Text] [Related]
18. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Daigneault A; Baker JS; Guo J; Lauri P; Favero A; Forsell N; Johnston C; Ohrel SB; Sohngen B Glob Environ Change; 2022 Aug; 76():1-13. PubMed ID: 38024226 [TBL] [Abstract][Full Text] [Related]
19. Importance of Cross-Sector Interactions When Projecting Forest Carbon across Alternative Socioeconomic Futures. Jones JPH; Baker JS; Austin K; Latta G; Wade CM; Cai Y; Aramayo-Lipa L; Beach R; Ohrel SB; Ragnauth S; Creason J; Cole J J For Econ; 2019; 34(3-4):205-231. PubMed ID: 32280189 [TBL] [Abstract][Full Text] [Related]
20. Toward inventory-based estimates of soil organic carbon in forests of the United States. Domke GM; Perry CH; Walters BF; Nave LE; Woodall CW; Swanston CW Ecol Appl; 2017 Jun; 27(4):1223-1235. PubMed ID: 28165643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]