BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35107884)

  • 1. A practical guide to interpreting and generating bottom-up proteomics data visualizations.
    Schessner JP; Voytik E; Bludau I
    Proteomics; 2022 Apr; 22(8):e2100103. PubMed ID: 35107884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlphaPeptStats: an open-source Python package for automated and scalable statistical analysis of mass spectrometry-based proteomics.
    Krismer E; Bludau I; Strauss MT; Mann M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37527012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProteomicsBrowser: MS/proteomics data visualization and investigation.
    Peng G; Wilson R; Tang Y; Lam TT; Nairn AC; Williams K; Zhao H
    Bioinformatics; 2019 Jul; 35(13):2313-2314. PubMed ID: 30462190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MassDash: A Web-Based Dashboard for Data-Independent Acquisition Mass Spectrometry Visualization.
    Sing JC; Charkow J; AlHigaylan M; Horecka I; Xu L; Röst HL
    J Proteome Res; 2024 Jun; 23(6):2306-2314. PubMed ID: 38684072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge.
    Voytik E; Bludau I; Willems S; Hansen FM; Brunner AD; Strauss MT; Mann M
    Bioinformatics; 2022 Jan; 38(3):849-852. PubMed ID: 34586352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.
    Röst HL; Rosenberger G; Aebersold R; Malmström L
    Bioinformatics; 2015 Jul; 31(14):2415-7. PubMed ID: 25788625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PeptideShaker Online: A User-Friendly Web-Based Framework for the Identification of Mass Spectrometry-Based Proteomics Data.
    Farag YM; Horro C; Vaudel M; Barsnes H
    J Proteome Res; 2021 Dec; 20(12):5419-5423. PubMed ID: 34709836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unipept Visualizations: an interactive visualization library for biological data.
    Verschaffelt P; Collier J; Botzki A; Martens L; Dawyndt P; Mesuere B
    Bioinformatics; 2022 Jan; 38(2):562-563. PubMed ID: 34390575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlphaPept: a modern and open framework for MS-based proteomics.
    Strauss MT; Bludau I; Zeng WF; Voytik E; Ammar C; Schessner JP; Ilango R; Gill M; Meier F; Willems S; Mann M
    Nat Commun; 2024 Mar; 15(1):2168. PubMed ID: 38461149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oktoberfest: Open-source spectral library generation and rescoring pipeline based on Prosit.
    Picciani M; Gabriel W; Giurcoiu VG; Shouman O; Hamood F; Lautenbacher L; Jensen CB; Müller J; Kalhor M; Soleymaniniya A; Kuster B; The M; Wilhelm M
    Proteomics; 2024 Apr; 24(8):e2300112. PubMed ID: 37672792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlphaTims: Indexing Trapped Ion Mobility Spectrometry-TOF Data for Fast and Easy Accession and Visualization.
    Willems S; Voytik E; Skowronek P; Strauss MT; Mann M
    Mol Cell Proteomics; 2021; 20():100149. PubMed ID: 34543758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic method for surveying data visualizations and a resulting genomic epidemiology visualization typology: GEViT.
    Crisan A; Gardy JL; Munzner T
    Bioinformatics; 2019 May; 35(10):1668-1676. PubMed ID: 30256887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MD DaVis: interactive data visualization of protein molecular dynamics.
    Maity D; Pal D
    Bioinformatics; 2022 Jun; 38(12):3299-3301. PubMed ID: 35532115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of the dynamics of histone modifications and their crosstalk using PTM-CrossTalkMapper.
    Kirsch R; Jensen ON; Schwämmle V
    Methods; 2020 Dec; 184():78-85. PubMed ID: 31978537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified and Standardized Mass Spectrometry Data Processing in Python Using spectrum_utils.
    Bittremieux W; Levitsky L; Pilz M; Sachsenberg T; Huber F; Wang M; Dorrestein PC
    J Proteome Res; 2023 Feb; 22(2):625-631. PubMed ID: 36688502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses.
    Wang S; Li W; Hu L; Cheng J; Yang H; Liu Y
    Nucleic Acids Res; 2020 Aug; 48(14):e83. PubMed ID: 32526036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patpat: a public proteomics dataset search framework.
    Liao W; Zhang X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-criteria protein structure comparison and structural similarities analysis using pyMCPSC.
    Sharma A; Manolakos ES
    PLoS One; 2018; 13(10):e0204587. PubMed ID: 30332415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSpecteR: A User-Friendly and Interactive Application for Visualizing Top-Down and Bottom-Up Proteomics Data in R.
    Degnan DJ; Bramer LM; White AM; Zhou M; Bilbao A; McCue LA
    J Proteome Res; 2021 Apr; 20(4):2014-2020. PubMed ID: 33661636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.