These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35108023)

  • 1. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators.
    Heiden A; Preninger D; Lehner L; Baumgartner M; Drack M; Woritzka E; Schiller D; Gerstmayr R; Hartmann F; Kaltenbrunner M
    Sci Robot; 2022 Feb; 7(63):eabk2119. PubMed ID: 35108023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots.
    Cheng Y; Chan KH; Wang XQ; Ding T; Li T; Lu X; Ho GW
    ACS Nano; 2019 Nov; 13(11):13176-13184. PubMed ID: 31625724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Materials for Soft Robotics.
    Sachyani Keneth E; Kamyshny A; Totaro M; Beccai L; Magdassi S
    Adv Mater; 2021 May; 33(19):e2003387. PubMed ID: 33164255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D Printed Actuators with Soft-Robotic Functions.
    López-Valdeolivas M; Liu D; Broer DJ; Sánchez-Somolinos C
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29210486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomic perspiration in 3D-printed hydrogel actuators.
    Mishra AK; Wallin TJ; Pan W; Xu A; Wang K; Giannelis EP; Mazzolai B; Shepherd RF
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing soft matter in three dimensions.
    Truby RL; Lewis JA
    Nature; 2016 Dec; 540(7633):371-378. PubMed ID: 27974748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negshell casting: 3D-printed structured and sacrificial cores for soft robot fabrication.
    Preechayasomboon P; Rombokas E
    PLoS One; 2020; 15(6):e0234354. PubMed ID: 32530942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
    Umedachi T; Vikas V; Trimmer BA
    Bioinspir Biomim; 2016 Mar; 11(2):025001. PubMed ID: 26963596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate.
    De Pascali C; Naselli GA; Palagi S; Scharff RBN; Mazzolai B
    Sci Robot; 2022 Jul; 7(68):eabn4155. PubMed ID: 35895921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing Soft Matters and Applications: A Review.
    Zhan S; Guo AXY; Cao SC; Liu N
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nodes for modes: nodal honeycomb metamaterial enables a soft robot with multimodal locomotion.
    Dikici Y; Daltorio K; Akkus O
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38631362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biobased Inks Based on Cuttlefish Ink and Cellulose Nanofibers for Biodegradable Patterned Soft Actuators.
    Chen Z; Zhao X; Gao B; Xu L; Chen H; Liu Z; Li P; Yan Q; Zheng H; Xue F; Xiong J; Ding R; Fei T; Tang Z; Peng Q; Hu Y; He X
    ACS Appl Mater Interfaces; 2024 May; 16(17):22547-22557. PubMed ID: 38628112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics.
    Baumgartner M; Hartmann F; Drack M; Preninger D; Wirthl D; Gerstmayr R; Lehner L; Mao G; Pruckner R; Demchyshyn S; Reiter L; Strobel M; Stockinger T; Schiller D; Kimeswenger S; Greibich F; Buchberger G; Bradt E; Hild S; Bauer S; Kaltenbrunner M
    Nat Mater; 2020 Oct; 19(10):1102-1109. PubMed ID: 32541932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.