These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35108038)

  • 1. Computing foaming flows across scales: From breaking waves to microfluidics.
    Karnakov P; Litvinov S; Koumoutsakos P
    Sci Adv; 2022 Feb; 8(5):eabm0590. PubMed ID: 35108038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver.
    Bryngelson SH; Schmidmayer K; Coralic V; Meng JC; Maeda K; Colonius T
    Comput Phys Commun; 2021 Sep; 266():. PubMed ID: 34168375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Thin-Liquid Films Surrounding Bubbles in Microfluidics and Their Impact on the Pressure Drop and Fluid Movement.
    Chao C; Jin X; Fan X
    Langmuir; 2020 Dec; 36(49):15102-15111. PubMed ID: 33283522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Computational Methodology for Modeling Electrohydrodynamic Flows: Prediction and Optimization Capability for the Generation of Bubbles and Fibers.
    Aramide B; Kothandaraman A; Edirisinghe M; Jayasinghe SN; Ventikos Y
    Langmuir; 2019 Aug; 35(31):10203-10212. PubMed ID: 30892903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Level-Set Interface Description Approach for Thermal Phase Change of Nanofluids.
    Yahyaee A; Bahman AS; Olesen K; Sørensen H
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics.
    Hariadi RF; Winfree E; Yurke B
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):E6086-95. PubMed ID: 26504222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures.
    Sattari A; Hanafizadeh P; Hoorfar M
    Adv Colloid Interface Sci; 2020 Aug; 282():102208. PubMed ID: 32721624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale interactions of liquid, bubbles and solid phases in ultrasonic fields revealed by multiphysics modelling and ultrafast X-ray imaging.
    Qin L; Porfyrakis K; Tzanakis I; Grobert N; Eskin DG; Fezzaa K; Mi J
    Ultrason Sonochem; 2022 Sep; 89():106158. PubMed ID: 36103805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The alveolar surface network: a new anatomy and its physiological significance.
    Scarpelli EM
    Anat Rec; 1998 Aug; 251(4):491-527. PubMed ID: 9713987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size limits the formation of liquid jets during bubble bursting.
    Lee JS; Weon BM; Park SJ; Je JH; Fezzaa K; Lee WK
    Nat Commun; 2011 Jun; 2():367. PubMed ID: 21694715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of the dynamics of bubble oscillations subjected to fast variations in the ambient pressure with a coupled level set and volume of fluid method.
    Chakraborty I
    Phys Rev E; 2019 Apr; 99(4-1):043107. PubMed ID: 31108714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble-free and pulse-free fluid delivery into microfluidic devices.
    Kang YJ; Yeom E; Seo E; Lee SJ
    Biomicrofluidics; 2014 Jan; 8(1):014102. PubMed ID: 24753723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity bias in intrusive gas-liquid flow measurements.
    Hohermuth B; Kramer M; Felder S; Valero D
    Nat Commun; 2021 Jul; 12(1):4123. PubMed ID: 34226538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between gas-liquid mass transfer and bubble behaviours.
    Li X; Wang W; Zhang P; Li J; Chen G
    R Soc Open Sci; 2019 May; 6(5):190136. PubMed ID: 31218056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifurcations in flows of complex fluids around microfluidic cylinders.
    Haward SJ; Hopkins CC; Varchanis S; Shen AQ
    Lab Chip; 2021 Oct; 21(21):4041-4059. PubMed ID: 34647558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on Microbubbles and Microdroplets Flowing through Microfluidic Geometrical Elements.
    Cerdeira ATS; Campos JBLM; Miranda JM; Araújo JDP
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32075302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubble-induced damping in displacement-driven microfluidic flows.
    Lee J; Rahman F; Laoui T; Karnik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026301. PubMed ID: 23005848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of Static and Dynamic Bubble Surface Tension Using a Deformation-Based Microfluidic Tensiometer.
    Liu S; Dutcher CS
    J Phys Chem B; 2021 Dec; 125(51):13916-13927. PubMed ID: 34919401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical equilibrium of bubble oscillations in dilute bubbly flows.
    Colonius T; Hagmeijer R; Ando K; Brennen CE
    Phys Fluids (1994); 2008 Apr; 20(4):40902. PubMed ID: 19547725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.