These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanical Leaf Removal for Improved Botrytis Bunch Rot Control in Hed B; Centinari M Plant Dis; 2024 Oct; 108(10):3156-3162. PubMed ID: 38902880 [TBL] [Abstract][Full Text] [Related]
3. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. Steel CC; Blackman JW; Schmidtke LM J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852 [TBL] [Abstract][Full Text] [Related]
4. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California. Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622 [TBL] [Abstract][Full Text] [Related]
5. Use of Gibberellic Acid for Management of Bunch Rot on Chardonnay and Vignoles Grape. Hed B; Ngugi HK; Travis JW Plant Dis; 2011 Mar; 95(3):269-278. PubMed ID: 30743507 [TBL] [Abstract][Full Text] [Related]
6. The emerging contribution of social wasps to grape rot disease ecology. Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT PeerJ; 2017; 5():e3223. PubMed ID: 28462032 [TBL] [Abstract][Full Text] [Related]
7. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries. Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Injuries Caused by Anastrepha fraterculus (Wied.) (Diptera: Tephritidae) on the Incidence of Bunch Rot Diseases in Table Grape. Machota R; Bortoli LC; Cavalcanti FR; Botton M; Grützmacher AD Neotrop Entomol; 2016 Aug; 45(4):361-8. PubMed ID: 26911161 [TBL] [Abstract][Full Text] [Related]
10. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454 [No Abstract] [Full Text] [Related]
11. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
12. Quantification of Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375 [TBL] [Abstract][Full Text] [Related]
13. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards. Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875 [TBL] [Abstract][Full Text] [Related]
14. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X; Glawe DA; Kramer E; Weller D; Okubara PA Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [TBL] [Abstract][Full Text] [Related]
15. Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine. Rossmann S; Richter R; Sun H; Schneeberger K; Töpfer R; Zyprian E; Theres K Plant J; 2020 Mar; 101(5):1234-1248. PubMed ID: 31663642 [TBL] [Abstract][Full Text] [Related]
16. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Calvo-Garrido C; Viñas I; Elmer P; Usall J; Teixidó N Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778 [TBL] [Abstract][Full Text] [Related]
17. Severe Outbreaks of Bunch Rots Caused by Rhizopus stolonifer and Aspergillus niger on Table Grapes in Chile. Latorre BA; Viertel SC; Spadaro I Plant Dis; 2002 Jul; 86(7):815. PubMed ID: 30818592 [TBL] [Abstract][Full Text] [Related]
18. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368 [TBL] [Abstract][Full Text] [Related]
20. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]