BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35108636)

  • 1. Environmentally friendly ZnO/Castor oil polyurethane composites for the gas-phase adsorption of acetic acid.
    Zuliani A; Bandelli D; Chelazzi D; Giorgi R; Baglioni P
    J Colloid Interface Sci; 2022 May; 614():451-459. PubMed ID: 35108636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption kinetics of acetic acid into ZnO/castor oil-derived polyurethanes.
    Zuliani A; Chelazzi D; Mastrangelo R; Giorgi R; Baglioni P
    J Colloid Interface Sci; 2023 Feb; 632(Pt A):74-86. PubMed ID: 36410296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention.
    Zhang Y; Liu B; Huang K; Wang S; Quirino RL; Zhang ZX; Zhang C
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37607-37618. PubMed ID: 32814393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport behavior of n-alkane penetrants into castor oil based polyurethane-polyester nonwoven fabric composites.
    Satheesh Kumar MN; Manjula KS; Siddaramaiah
    J Hazard Mater; 2007 Jun; 145(1-2):36-44. PubMed ID: 17196329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-interpenetrating polymer networks prepared from castor oil-based waterborne polyurethanes and carboxymethyl chitosan.
    Zhang W; Deng H; Xia L; Shen L; Zhang C; Lu Q; Sun S
    Carbohydr Polym; 2021 Mar; 256():117507. PubMed ID: 33483029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles.
    Díez-Pascual AM; Díez-Vicente AL
    Biomacromolecules; 2015 Sep; 16(9):2631-44. PubMed ID: 26302315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.
    Ganji Y; Kasra M; Salahshour Kordestani S; Bagheri Hariri M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():341-9. PubMed ID: 25063127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites.
    Seil JT; Webster TJ
    Int J Nanomedicine; 2008; 3(4):523-31. PubMed ID: 19337420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing a castor oil-based polyurethane as bioadhesive.
    Su Q; Wei D; Dai W; Zhang Y; Xia Z
    Colloids Surf B Biointerfaces; 2019 Sep; 181():740-748. PubMed ID: 31229801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation of fibronectin adsorption onto polyurethane surfaces.
    Panos M; Sen TZ; Ahunbay MG
    Langmuir; 2012 Aug; 28(34):12619-28. PubMed ID: 22856639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of hydrophobic polyurethane/castor oil biocomposites with agroindustrial residues for sorption of oils and organic solvents.
    Vieira Amorim F; José Ribeiro Padilha R; Maria Vinhas G; Ramos Luiz M; Costa de Souza N; Medeiros Bastos de Almeida Y
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):442-454. PubMed ID: 32791385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and antibacterial property of waterborne polyurethane/Zn-Al layered double hydroxides/ZnO nanocomposites.
    Zhang WD; Zheng YM; Xu YS; Yu YX; Shi QS; Liu L; Peng H; Ouyang Y
    J Nanosci Nanotechnol; 2013 Jan; 13(1):409-16. PubMed ID: 23646747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the Interaction between Carboxylic Acids and Zinc Oxide: Insight into Degradation of ZnO Pigments.
    Lubani J; De Angelis F; Meggiolaro D; Cartechini L; Fantacci S
    Molecules; 2022 May; 27(11):. PubMed ID: 35684300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.
    Morral-Ruíz G; Melgar-Lesmes P; García ML; Solans C; García-Celma MJ
    Int J Pharm; 2014 Jan; 461(1-2):1-13. PubMed ID: 24275445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium - castor oil based polyurethane composite foams for bone tissue engineering.
    Aguilar-Pérez FJ; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Rosales-Ibañez R; Rodríguez-Ortiz JA; Torres-Hernández Y
    J Biomater Sci Polym Ed; 2019 Oct; 30(15):1415-1432. PubMed ID: 31233380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.
    Tan ACW; Polo-Cambronell BJ; Provaggi E; Ardila-Suárez C; Ramirez-Caballero GE; Baldovino-Medrano VG; Kalaskar DM
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29159831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a bio-based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye.
    da Rosa Schio R; da Rosa BC; Gonçalves JO; Pinto LAA; Mallmann ES; Dotto GL
    Int J Biol Macromol; 2019 Jan; 121():373-380. PubMed ID: 30287377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.
    Xia Y; Larock RC
    Macromol Rapid Commun; 2011 Sep; 32(17):1331-7. PubMed ID: 25867899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications.
    K SS; M P I; G R R
    Int J Biol Macromol; 2019 Mar; 124():163-174. PubMed ID: 30471395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.
    Carriço CS; Fraga T; Carvalho VE; Pasa VMD
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28671592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.