These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3510869)

  • 41. [Stimulation of peptidyltransferase activity of 50S subunits by alcohols].
    Maĭmets TO; Remme IaL; Villems RL
    Mol Biol (Mosk); 1985; 19(3):617-22. PubMed ID: 3897829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The modification of the peptidyltransferase activity of 50-S ribosomal subunits, LiCl-split proteins and L16 ribosomal protein by pyridoxal phosphate.
    Baxter RM; White VT; Zahid ND
    Eur J Biochem; 1980 Sep; 110(1):161-6. PubMed ID: 6254759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA.
    Green R; Switzer C; Noller HF
    Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of the peptidyltransferase acceptor site by 2'(3')-O-cycloleucyl- and alpha-aminoisobutyryl derivatives of cytidylyl-(3'-5')adenosine.
    Chládek S; Bhuta P
    Biochim Biophys Acta; 1982 Feb; 696(2):212-7. PubMed ID: 7037056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 2'(3')-O-L-Phenylalanyl derivatives of N2,5'-anhydroformycin and N4,5'-anhydroformycin: new substrates for ribosomal peptidyltransferase with a fixed anti and syn conformation of the base.
    Bhuta P; Zemlicka J
    Biochim Biophys Acta; 1985 Aug; 841(2):145-50. PubMed ID: 3848332
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones.
    Bobkova EV; Yan YP; Jordan DB; Kurilla MG; Pompliano DL
    J Biol Chem; 2003 Mar; 278(11):9802-7. PubMed ID: 12645571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analogues of chloramphenicol: circular dichroism spectra, inhibition of ribosomal peptidyltransferase, and possible mechanism of action.
    Bhuta P; Chung HL; Hwang JS; Zemlicka J
    J Med Chem; 1980 Dec; 23(12):1299-305. PubMed ID: 7005448
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow transacylation of peptidyladenosine allows analysis of the 2'/3'-isomer specificity of peptidyltransferase.
    Taiji M; Yokoyama S; Miyazawa T
    Biochemistry; 1985 Oct; 24(21):5776-80. PubMed ID: 3910083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoaffinity polyamines: interactions with AcPhe-tRNA free in solution or bound at the P-site of Escherichia coli ribosomes.
    Amarantos I; Kalpaxis DL
    Nucleic Acids Res; 2000 Oct; 28(19):3733-42. PubMed ID: 11000265
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic studies on the activation of eukaryotic peptidyltransferase by potassium.
    Ioannou M; Coutsogeorgopoulos C
    Arch Biochem Biophys; 1997 Sep; 345(2):325-31. PubMed ID: 9308906
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxazolidinones mechanism of action: inhibition of the first peptide bond formation.
    Patel U; Yan YP; Hobbs FW; Kaczmarczyk J; Slee AM; Pompliano DL; Kurilla MG; Bobkova EV
    J Biol Chem; 2001 Oct; 276(40):37199-205. PubMed ID: 11483595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of the puromycin reaction with benzamidine and related compounds.
    Bhuta A; Zemlicka J
    FEBS Lett; 1982 Jun; 142(2):215-8. PubMed ID: 7049733
    [No Abstract]   [Full Text] [Related]  

  • 53. Photoaffinity labeling of the ribosomal peptidyl transferase site with synthetic puromycin analogues.
    Vince R; Brownell J; Fong KL
    Biochemistry; 1978 Dec; 17(25):5489-93. PubMed ID: 365231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of new photoaffinity labels for ribosomal peptidyltransferase.
    Quiggle K; Wejrowski ML; Chládek S
    Biochemistry; 1978 Jan; 17(1):94-101. PubMed ID: 618551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stereochemical control of the ribosomal peptidyltransferase reaction. The role of acceptor substrate amino acid side chain orientation.
    Bhuta A; Chládek S
    FEBS Lett; 1978 Dec; 96(1):23-5. PubMed ID: 365574
    [No Abstract]   [Full Text] [Related]  

  • 56. Inhibitors of protein synthesis V. Irreversible interaction of antibiotics with an initiation complex.
    Coutsogeorgopoulos C; Miller JT; Hann DM
    Nucleic Acids Res; 1975 Jul; 2(7):1053-72. PubMed ID: 1098022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Type of inhibition of peptide bond formation by chloramphenicol depends on the temperature and the concentration of ammonium ions.
    Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1989 Oct; 36(4):615-9. PubMed ID: 2682205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peptidyltransferase activity of ribosomes and a ribosome precursor from a mutant of Escherichia coli.
    Sims PF; Wild DG
    Biochem J; 1976 Dec; 160(3):721-6. PubMed ID: 797389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ribosomal binding and dipeptide formation by misacylated tRNA(Phe),S.
    Heckler TG; Roesser JR; Xu C; Chang PI; Hecht SM
    Biochemistry; 1988 Sep; 27(19):7254-62. PubMed ID: 3061451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.