These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35109654)
21. Effects of dissolved organic matter molecules on the sequestration and stability of uranium during the transformation of Fe (oxyhydr)oxides. Ding Y; Huang X; Zhang H; Ding D Water Res; 2023 Feb; 229():119387. PubMed ID: 36459895 [TBL] [Abstract][Full Text] [Related]
22. Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions. Wei J; Tu C; Yuan G; Bi D; Xiao L; Theng BKG; Wang H; Ok YS J Hazard Mater; 2019 Apr; 368():541-549. PubMed ID: 30710783 [TBL] [Abstract][Full Text] [Related]
23. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar. Kim HB; Kim JG; Kim SH; Kwon EE; Baek K Environ Pollut; 2019 Oct; 253():231-238. PubMed ID: 31310873 [TBL] [Abstract][Full Text] [Related]
24. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide. He X; Zhong P; Qiu X Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541 [TBL] [Abstract][Full Text] [Related]
25. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. Yang J; Liu J; Dynes JJ; Peak D; Regier T; Wang J; Zhu S; Shi J; Tse JS Environ Sci Pollut Res Int; 2014 Feb; 21(4):2943-54. PubMed ID: 24170498 [TBL] [Abstract][Full Text] [Related]
26. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment. Huang B; Gu L; He H; Xu Z; Pan X Environ Sci Process Impacts; 2016 Sep; 18(9):1185-92. PubMed ID: 27421071 [TBL] [Abstract][Full Text] [Related]
27. An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite. Choppala G; Karimian N; Burton ED J Hazard Mater; 2022 Jun; 431():128580. PubMed ID: 35359110 [TBL] [Abstract][Full Text] [Related]
28. Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies. Shen C; Chen H; Wu S; Wen Y; Li L; Jiang Z; Li M; Liu W J Hazard Mater; 2013 Jan; 244-245():689-97. PubMed ID: 23200119 [TBL] [Abstract][Full Text] [Related]
29. Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. Hsu LC; Liu YT; Tzou YM J Hazard Mater; 2015 Oct; 296():230-238. PubMed ID: 25935296 [TBL] [Abstract][Full Text] [Related]
30. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy. Liu S; Zhu Y; Liu L; He Z; Giesy JP; Bai Y; Sun F; Wu F Environ Pollut; 2018 Mar; 234():726-734. PubMed ID: 29241158 [TBL] [Abstract][Full Text] [Related]
31. Mechanistic insights into the detoxification of Cr(VI) and immobilization of Cr and C during the biotransformation of ferrihydrite-polygalacturonic acid-Cr coprecipitates. Zhang H; Lu Y; Ouyang Z; Zhou W; Shen X; Gao K; Chen S; Yang Y; Hu S; Liu C J Hazard Mater; 2023 Apr; 448():130726. PubMed ID: 36736211 [TBL] [Abstract][Full Text] [Related]
32. New Insights into the Role of Natural Organic Matter in Fe-Cr Coprecipitation: Importance of Molecular Selectivity. Zhu S; Luo W; Mo Y; Ding K; Zhang M; Jin C; Wang S; Chao Y; Tang YT; Qiu R Environ Sci Technol; 2023 Sep; 57(37):13991-14001. PubMed ID: 37523249 [TBL] [Abstract][Full Text] [Related]
33. Removal and simultaneous reduction of Cr(VI) by organo-Fe(III) composites produced during coprecipitation and coagulation processes. Chen KY; Tzou YM; Chan YT; Wu JJ; Teah HY; Liu YT J Hazard Mater; 2019 Aug; 376():12-20. PubMed ID: 31100491 [TBL] [Abstract][Full Text] [Related]
34. Stabilization of Natural Organic Matter by Short-Range-Order Iron Hydroxides. Chen KY; Chen TY; Chan YT; Cheng CY; Tzou YM; Liu YT; Teah HY Environ Sci Technol; 2016 Dec; 50(23):12612-12620. PubMed ID: 27782386 [TBL] [Abstract][Full Text] [Related]
35. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. Wu S; Zhang X; Sun Y; Wu Z; Li T; Hu Y; Lv J; Li G; Zhang Z; Zhang J; Zheng L; Zhen X; Chen B J Hazard Mater; 2016 Oct; 316():34-42. PubMed ID: 27209517 [TBL] [Abstract][Full Text] [Related]
36. Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study. Morin G; Juillot F; Casiot C; Bruneel O; Personné JC; Elbaz-Poulichet F; Leblanc M; Ildefonse P; Calas G Environ Sci Technol; 2003 May; 37(9):1705-12. PubMed ID: 12775038 [TBL] [Abstract][Full Text] [Related]
37. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Huang XY; Ling L; Zhang WX J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172 [TBL] [Abstract][Full Text] [Related]
38. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures. Ahn H; Jo HY; Lee YJ; Kim GY J Environ Radioact; 2016 Jul; 158-159():30-7. PubMed ID: 27060782 [TBL] [Abstract][Full Text] [Related]
39. Characterization of Chromium Bioremediation Products in Flow-Through Column Sediments Using Micro-X-ray Fluorescence and X-ray Absorption Spectroscopy. Varadharajan C; Han R; Beller HR; Yang L; Marcus MA; Michel M; Nico PS J Environ Qual; 2015 May; 44(3):729-38. PubMed ID: 26024254 [TBL] [Abstract][Full Text] [Related]
40. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions. Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]