These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3511037)

  • 1. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes.
    Wenman WM; Meuser RU
    J Bacteriol; 1986 Feb; 165(2):602-7. PubMed ID: 3511037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components.
    Hackstadt T
    J Bacteriol; 1986 Jan; 165(1):13-20. PubMed ID: 3941041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and antigenicity of chlamydial proteins that bind eukaryotic cell membrane proteins.
    Baghian A; Schnorr KL
    Am J Vet Res; 1992 Jun; 53(6):980-6. PubMed ID: 1378251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis.
    Caldwell HD; Kromhout J; Schachter J
    Infect Immun; 1981 Mar; 31(3):1161-76. PubMed ID: 7228399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic cell components that bind to chlamydial elementary bodies: the histones.
    Vretou E; Eliades P; Psarrou E; Kouvatsou R
    FEMS Microbiol Lett; 1992 Mar; 70(3):225-30. PubMed ID: 1624104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific antigens of Chlamydia pecorum and their homologues in C psittaci and C trachomatis.
    Baghian A; Kousoulas K; Truax R; Storz J
    Am J Vet Res; 1996 Dec; 57(12):1720-5. PubMed ID: 8950425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein.
    Caldwell HD; Perry LJ
    Infect Immun; 1982 Nov; 38(2):745-54. PubMed ID: 7141712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic analysis of the major outer membrane protein of Chlamydia spp.
    Caldwell HD; Schachter J
    Infect Immun; 1982 Mar; 35(3):1024-31. PubMed ID: 7068209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class specific immunoglobulin response to individual polypeptides of Chlamydia trachomatis, elementary bodies, and reticulate bodies in patients with chlamydial infection.
    Cevenini R; Rumpianesi F; Donati M; Moroni A; Sambri V; La Placa M
    J Clin Pathol; 1986 Dec; 39(12):1313-6. PubMed ID: 3805317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective role of magnesium in the neutralization by antibodies of Chlamydia trachomatis infectivity.
    Peterson EM; Zhong GM; Carlson E; de la Maza LM
    Infect Immun; 1988 Apr; 56(4):885-91. PubMed ID: 3346076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A heat-labile protein of Chlamydia trachomatis binds to HeLa cells and inhibits the adherence of chlamydiae.
    Joseph TD; Bose SK
    Proc Natl Acad Sci U S A; 1991 May; 88(9):4054-8. PubMed ID: 2023955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.
    Hatch TP; Allan I; Pearce JH
    J Bacteriol; 1984 Jan; 157(1):13-20. PubMed ID: 6690419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody-neutralizing activity against all urogenital Chlamydia trachomatis serovars in Chlamydia suis-infected pigs.
    Donati M; Di Francesco A; Delucca F; Di Paolo M; Battilani M; Balboni A; Baldelli R; Cevenini R
    FEMS Immunol Med Microbiol; 2011 Feb; 61(1):125-8. PubMed ID: 21214636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, and primary structure of a Chlamydia trachomatis binding protein.
    Kaul R; Roy KL; Wenman WM
    J Bacteriol; 1987 Nov; 169(11):5152-6. PubMed ID: 3312167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.
    Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G
    Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of the surface-exposed 18-kilodalton binding protein in Chlamydia trachomatis by immunogold staining.
    Gray GJ; Kaul R; Sherburne R; Wenman WM
    J Bacteriol; 1990 Jun; 172(6):3524-8. PubMed ID: 2160947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic AMP inhibits developmental regulation of Chlamydia trachomatis.
    Kaul R; Wenman WM
    J Bacteriol; 1986 Nov; 168(2):722-7. PubMed ID: 3023286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of lipopolysaccharide in the exposure of protective antigenic sites on the major outer membrane protein of Chlamydia trachomatis.
    Vretou E; Psarrou E; Spiliopoulou D
    J Gen Microbiol; 1992 Jun; 138(6):1221-7. PubMed ID: 1382112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.