These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35110570)

  • 1. Buxus and Tetracentron genomes help resolve eudicot genome history.
    Chanderbali AS; Jin L; Xu Q; Zhang Y; Zhang J; Jian S; Carroll E; Sankoff D; Albert VA; Howarth DG; Soltis DE; Soltis PS
    Nat Commun; 2022 Feb; 13(1):643. PubMed ID: 35110570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots.
    Wang Z; Li Y; Sun P; Zhu M; Wang D; Lu Z; Hu H; Xu R; Zhang J; Ma J; Liu J; Yang Y
    BMC Biol; 2022 Oct; 20(1):216. PubMed ID: 36195948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae).
    Hansen DR; Dastidar SG; Cai Z; Penaflor C; Kuehl JV; Boore JL; Jansen RK
    Mol Phylogenet Evol; 2007 Nov; 45(2):547-63. PubMed ID: 17644003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements.
    Liu PL; Zhang X; Mao JF; Hong YM; Zhang RG; E Y; Nie S; Jia K; Jiang CK; He J; Shen W; He Q; Zheng W; Abbas S; Jewaria PK; Tian X; Liu CJ; Jiang X; Yin Y; Liu B; Wang L; Jin B; Ma Y; Qiu Z; Baluška F; Šamaj J; He X; Niu S; Xie J; Xie L; Xu H; Kong H; Ge S; Dixon RA; Jiao Y; Lin J
    Genome Biol; 2020 Dec; 21(1):291. PubMed ID: 33267872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution.
    Sun Y; Moore MJ; Zhang S; Soltis PS; Soltis DE; Zhao T; Meng A; Li X; Li J; Wang H
    Mol Phylogenet Evol; 2016 Mar; 96():93-101. PubMed ID: 26724406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete plastid genome sequencing of Trochodendraceae reveals a significant expansion of the inverted repeat and suggests a Paleogene divergence between the two extant species.
    Sun YX; Moore MJ; Meng AP; Soltis PS; Soltis DE; Li JQ; Wang HC
    PLoS One; 2013; 8(4):e60429. PubMed ID: 23577110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification.
    Vekemans D; Proost S; Vanneste K; Coenen H; Viaene T; Ruelens P; Maere S; Van de Peer Y; Geuten K
    Mol Biol Evol; 2012 Dec; 29(12):3793-806. PubMed ID: 22821009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research.
    Strijk JS; Hinsinger DD; Zhang F; Cao K
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31738437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome triplication associated with early diversification of the core eudicots.
    Jiao Y; Leebens-Mack J; Ayyampalayam S; Bowers JE; McKain MR; McNeal J; Rolf M; Ruzicka DR; Wafula E; Wickett NJ; Wu X; Zhang Y; Wang J; Zhang Y; Carpenter EJ; Deyholos MK; Kutchan TM; Chanderbali AS; Soltis PS; Stevenson DW; McCombie R; Pires JC; Wong GK; Soltis DE; Depamphilis CW
    Genome Biol; 2012 Jan; 13(1):R3. PubMed ID: 22280555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chromosome-level genome assembly for the tertiary relict plant Tetracentron sinense oliv. (trochodendraceae).
    Li M; Yang Y; Xu R; Mu W; Li Y; Mao X; Zheng Z; Bi H; Hao G; Li X; Xu X; Xi Z; Shrestha N; Liu J
    Mol Ecol Resour; 2021 May; 21(4):1186-1199. PubMed ID: 33486895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ancestral polyploidy in seed plants and angiosperms.
    Jiao Y; Wickett NJ; Ayyampalayam S; Chanderbali AS; Landherr L; Ralph PE; Tomsho LP; Hu Y; Liang H; Soltis PS; Soltis DE; Clifton SW; Schlarbaum SE; Schuster SC; Ma H; Leebens-Mack J; dePamphilis CW
    Nature; 2011 May; 473(7345):97-100. PubMed ID: 21478875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread genome duplications throughout the history of flowering plants.
    Cui L; Wall PK; Leebens-Mack JH; Lindsay BG; Soltis DE; Doyle JJ; Soltis PS; Carlson JE; Arumuganathan K; Barakat A; Albert VA; Ma H; dePamphilis CW
    Genome Res; 2006 Jun; 16(6):738-49. PubMed ID: 16702410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae.
    Nock CJ; Baten A; King GJ
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S13. PubMed ID: 25522147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution.
    Yang Y; Sun P; Lv L; Wang D; Ru D; Li Y; Ma T; Zhang L; Shen X; Meng F; Jiao B; Shan L; Liu M; Wang Q; Qin Z; Xi Z; Wang X; Davis CC; Liu J
    Nat Plants; 2020 Mar; 6(3):215-222. PubMed ID: 32094642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns.
    Jansen RK; Cai Z; Raubeson LA; Daniell H; Depamphilis CW; Leebens-Mack J; Müller KF; Guisinger-Bellian M; Haberle RC; Hansen AK; Chumley TW; Lee SB; Peery R; McNeal JR; Kuehl JV; Boore JL
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19369-74. PubMed ID: 18048330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloranthus genome provides insights into the early diversification of angiosperms.
    Guo X; Fang D; Sahu SK; Yang S; Guang X; Folk R; Smith SA; Chanderbali AS; Chen S; Liu M; Yang T; Zhang S; Liu X; Xu X; Soltis PS; Soltis DE; Liu H
    Nat Commun; 2021 Nov; 12(1):6930. PubMed ID: 34836973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets.
    Zeng L; Zhang N; Zhang Q; Endress PK; Huang J; Ma H
    New Phytol; 2017 May; 214(3):1338-1354. PubMed ID: 28294342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny.
    McKibben MTW; Finch G; Barker MS
    Am J Bot; 2024 Aug; 111(8):e16378. PubMed ID: 39039654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms.
    Ma J; Sun P; Wang D; Wang Z; Yang J; Li Y; Mu W; Xu R; Wu Y; Dong C; Shrestha N; Liu J; Yang Y
    Nat Commun; 2021 Nov; 12(1):6929. PubMed ID: 34836967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Aquilegia genome reveals a hybrid origin of core eudicots.
    Aköz G; Nordborg M
    Genome Biol; 2019 Nov; 20(1):256. PubMed ID: 31779695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.