BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35110654)

  • 1. Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes.
    Puchalt JC; Gonzalez-Rojo JF; Gómez-Escribano AP; Vázquez-Manrique RP; Sánchez-Salmerón AJ
    Sci Rep; 2022 Feb; 12(1):1767. PubMed ID: 35110654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations.
    Zavagno G; Raimundo A; Kirby A; Saunter C; Weinkove D
    Geroscience; 2024 Apr; 46(2):2281-2293. PubMed ID: 37940787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active backlight for automating visual monitoring: An analysis of a lighting control technique for Caenorhabditis elegans cultured on standard Petri plates.
    Puchalt JC; Sánchez-Salmerón AJ; Martorell Guerola P; Genovés Martínez S
    PLoS One; 2019; 14(4):e0215548. PubMed ID: 30990857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform.
    Koopman M; Peter Q; Seinstra RI; Perni M; Vendruscolo M; Dobson CM; Knowles TPJ; Nollen EAA
    Nat Protoc; 2020 Jun; 15(6):2071-2106. PubMed ID: 32433626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Results Variance in Lifespan Machines: An Analysis of the Influence of Vibrotaxis on Wild-Type
    Puchalt JC; Layana Castro PE; Sánchez-Salmerón AJ
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques.
    Puchalt JC; Sánchez-Salmerón AJ; Ivorra E; Llopis S; Martínez R; Martorell P
    Sci Rep; 2021 Jun; 11(1):12289. PubMed ID: 34112931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrapopulation analysis of longitudinal lifespan in Caenorhabditis elegans identifies W09D10.4 as a novel AMPK-associated healthspan shortening factor.
    Nakano Y; Moriuchi M; Fukushima Y; Hayashi K; Suico MA; Kai H; Koutaki G; Shuto T
    J Pharmacol Sci; 2021 Mar; 145(3):241-252. PubMed ID: 33602504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion.
    Tong J; Rezai P; Salam S; Selvaganapathy PR; Gupta BP
    J Vis Exp; 2013 May; (75):e50226. PubMed ID: 23665669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast, automated measurement of nematode swimming (thrashing) without morphometry.
    Buckingham SD; Sattelle DB
    BMC Neurosci; 2009 Jul; 10():84. PubMed ID: 19619274
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Layana Castro PE; Puchalt JC; García Garví A; Sánchez-Salmerón AJ
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans.
    Pitt JN; Strait NL; Vayndorf EM; Blue BW; Tran CH; Davis BEM; Huang K; Johnson BJ; Lim KM; Liu S; Nikjoo A; Vaid A; Wu JZ; Kaeberlein M
    Geroscience; 2019 Dec; 41(6):961-973. PubMed ID: 31728898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour.
    Gomez-Marin A; Stephens GJ; Brown AE
    J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27581484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powerful and interpretable behavioural features for quantitative phenotyping of
    Javer A; Ripoll-Sánchez L; Brown AEX
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Make robot motions natural.
    LaViers A
    Nature; 2019 Jan; 565(7740):422-424. PubMed ID: 30664672
    [No Abstract]   [Full Text] [Related]  

  • 15. Toward a living soft microrobot through optogenetic locomotion control of
    Dong X; Kheiri S; Lu Y; Xu Z; Zhen M; Liu X
    Sci Robot; 2021 Jun; 6(55):. PubMed ID: 34193562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nemo: a computational tool for analyzing nematode locomotion.
    Tsibidis GD; Tavernarakis N
    BMC Neurosci; 2007 Oct; 8():86. PubMed ID: 17941975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-driven automatic identification of locomotion states in Caenorhabditis elegans.
    Hoshi K; Shingai R
    J Neurosci Methods; 2006 Oct; 157(2):355-63. PubMed ID: 16750860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.
    Liu P; Martin RJ; Dong L
    Lab Chip; 2013 Feb; 13(4):650-61. PubMed ID: 23254956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C. elegans lifespan assay toolkit.
    Amrit FR; Ratnappan R; Keith SA; Ghazi A
    Methods; 2014 Aug; 68(3):465-75. PubMed ID: 24727064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving lifespan automation for Caenorhabditis elegans by using image processing and a post-processing adaptive data filter.
    Puchalt JC; Sánchez-Salmerón AJ; Ivorra E; Genovés Martínez S; Martínez R; Martorell Guerola P
    Sci Rep; 2020 May; 10(1):8729. PubMed ID: 32457411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.