BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35110739)

  • 1. Quantum defects as versatile anchors for carbon nanotube functionalization.
    Mann FA; Galonska P; Herrmann N; Kruss S
    Nat Protoc; 2022 Mar; 17(3):727-747. PubMed ID: 35110739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins.
    Mann FA; Herrmann N; Opazo F; Kruss S
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17732-17738. PubMed ID: 32511874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.
    Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanine Quantum Defects in Carbon Nanotubes for Biosensing.
    Galonska P; Mohr JM; Schrage CA; Schnitzler L; Kruss S
    J Phys Chem Lett; 2023 Apr; 14(14):3483-3490. PubMed ID: 37011259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors.
    Metternich JT; Wartmann JAC; Sistemich L; Nißler R; Herbertz S; Kruss S
    J Am Chem Soc; 2023 Jul; 145(27):14776-14783. PubMed ID: 37367958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes.
    Sekiyama S; Umezawa M; Iizumi Y; Ube T; Okazaki T; Kamimura M; Soga K
    Langmuir; 2019 Jan; 35(3):831-837. PubMed ID: 30585494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes.
    Polo E; Nitka TT; Neubert E; Erpenbeck L; Vuković L; Kruss S
    ACS Appl Mater Interfaces; 2018 May; 10(21):17693-17703. PubMed ID: 29708725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing chirality, diameter dependence, and temperature-controlling of single-walled carbon nanotube non-covalent functionalization by biologically compatible peptide: insights from molecular dynamics simulations.
    Tohidifar L; Hadipour NL
    J Mol Model; 2019 Aug; 25(9):274. PubMed ID: 31451939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorophore and dye-assisted dispersion of carbon nanotubes in aqueous solution.
    Koh B; Kim G; Yoon HK; Park JB; Kopelman R; Cheng W
    Langmuir; 2012 Aug; 28(32):11676-86. PubMed ID: 22812904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals.
    Berger FJ; de Sousa JA; Zhao S; Zorn NF; El Yumin AA; Quintana García A; Settele S; Högele A; Crivillers N; Zaumseil J
    ACS Nano; 2021 Mar; 15(3):5147-5157. PubMed ID: 33600164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Not all protein-mediated single-wall carbon nanotube dispersions are equally bioactive.
    Holt BD; McCorry MC; Boyer PD; Dahl KN; Islam MF
    Nanoscale; 2012 Dec; 4(23):7425-34. PubMed ID: 23086474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications.
    Wang H; Boghossian AA
    Mater Adv; 2023 Feb; 4(3):823-834. PubMed ID: 36761250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes.
    Sistemich L; Galonska P; Stegemann J; Ackermann J; Kruss S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300682. PubMed ID: 36891826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Fluorophore Decorated Single-Walled Carbon Nanotubes for
    Murali A; Haridharan N; Babu PS; Jayaveni S; Jaisankar SN
    J Nanosci Nanotechnol; 2018 Feb; 18(2):959-966. PubMed ID: 29448520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer antibody enhanced real time imaging cell probes--a novel theranostic tool using polymer linked carbon nanotubes and quantum dots.
    Brakmane G; Madani SY; Seifalian A
    Anticancer Agents Med Chem; 2013 Jun; 13(5):821-32. PubMed ID: 23537047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convenient method of attaching fluorescent dyes on single-walled carbon nanotubes pre-wrapped with DNA molecules.
    Tomura A; Umemura K
    Anal Biochem; 2018 Apr; 547():1-6. PubMed ID: 29428378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels.
    Kleiner S; Wulf V; Bisker G
    J Colloid Interface Sci; 2024 Sep; 670():439-448. PubMed ID: 38772260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.