These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35111510)

  • 21. Regulatory T cell features in chronic granulomatous disease.
    van de Geer A; Cuadrado E; Slot MC; van Bruggen R; Amsen D; Kuijpers TW
    Clin Exp Immunol; 2019 Aug; 197(2):222-229. PubMed ID: 30924925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dietary influence on pancreatic cancer growth by catechin and inositol hexaphosphate.
    McMillan B; Riggs DR; Jackson BJ; Cunningham C; McFadden DW
    J Surg Res; 2007 Jul; 141(1):115-9. PubMed ID: 17574044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inositol-6 phosphate inhibits the mTOR pathway and induces autophagy-mediated death in HT-29 colon cancer cells.
    Pandurangan AK; Ismail S; Esa NM; Munusamy MA
    Arch Med Sci; 2018 Oct; 14(6):1281-1288. PubMed ID: 30393482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells.
    Santilli G; Almarza E; Brendel C; Choi U; Beilin C; Blundell MP; Haria S; Parsley KL; Kinnon C; Malech HL; Bueren JA; Grez M; Thrasher AJ
    Mol Ther; 2011 Jan; 19(1):122-32. PubMed ID: 20978475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inositol hexaphosphate (IP6) inhibits key events of cancer metastasis: II. Effects on integrins and focal adhesions.
    Tantivejkul K; Vucenik I; Shamsuddin AM
    Anticancer Res; 2003; 23(5A):3681-9. PubMed ID: 14666664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth inhibitory and apoptotic effects of inositol hexaphosphate in transgenic adenocarcinoma of mouse prostate (TRAMP-C1) cells.
    Sharma G; Singh RP; Agarwal R
    Int J Oncol; 2003 Nov; 23(5):1413-8. PubMed ID: 14532984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease.
    Dhillon SS; Fattouh R; Elkadri A; Xu W; Murchie R; Walters T; Guo C; Mack D; Huynh HQ; Baksh S; Silverberg MS; Griffiths AM; Snapper SB; Brumell JH; Muise AM
    Gastroenterology; 2014 Sep; 147(3):680-689.e2. PubMed ID: 24931457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical, functional and genetic characterization of 16 patients suffering from chronic granulomatous disease variants - identification of 11 novel mutations in CYBB.
    Mollin M; Beaumel S; Vigne B; Brault J; Roux-Buisson N; Rendu J; Barlogis V; Catho G; Dumeril C; Fouyssac F; Monnier D; Gandemer V; Revest M; Brion JP; Bost-Bru C; Jeziorski E; Eitenschenck L; Jarrasse C; Drillon Haus S; Houachée-Chardin M; Hancart M; Michel G; Bertrand Y; Plantaz D; Kelecic J; Traberg R; Kainulainen L; Fauré J; Fieschi F; Stasia MJ
    Clin Exp Immunol; 2021 Feb; 203(2):247-266. PubMed ID: 32954498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for the involvement of the NADPH oxidase enzyme complex in the optimal accumulation of Platelet-activating factor in the human cell line PLB-985.
    Hiran T; Dinauer M; Johnson C; Clay K; Travers J
    Prostaglandins Other Lipid Mediat; 2001 Dec; 66(4):305-15. PubMed ID: 11785782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Molecular aspects of chronic granulomatous disease. "the NADPH oxidase complex"].
    Morel F
    Bull Acad Natl Med; 2007 Feb; 191(2):377-90; discussion 390-2. PubMed ID: 17969555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diagnostic paradigm for evaluation of male patients with chronic granulomatous disease, based on the dihydrorhodamine 123 assay.
    Jirapongsananuruk O; Malech HL; Kuhns DB; Niemela JE; Brown MR; Anderson-Cohen M; Fleisher TA
    J Allergy Clin Immunol; 2003 Feb; 111(2):374-9. PubMed ID: 12589359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correction of respiratory burst activity in X-linked chronic granulomatous cells to therapeutically relevant levels after gene transfer into bone marrow CD34+ cells.
    Becker S; Wasser S; Hauses M; Hossle JP; Ott MG; Dinauer MC; Ganser A; Hoelzer D; Seger R; Grez M
    Hum Gene Ther; 1998 Jul; 9(11):1561-70. PubMed ID: 9694155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-generated p47
    Wrona D; Siler U; Reichenbach J
    Sci Rep; 2017 Mar; 7():44187. PubMed ID: 28287132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inositol hexaphosphate suppresses growth and induces apoptosis in HT-29 colorectal cancer cells in culture: PI3K/Akt pathway as a potential target.
    Liu G; Song Y; Cui L; Wen Z; Lu X
    Int J Clin Exp Pathol; 2015; 8(2):1402-10. PubMed ID: 25973024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soyasaponin Bb inhibits the recruitment of toll-like receptor 4 (TLR4) into lipid rafts and its signaling pathway by suppressing the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent generation of reactive oxygen species.
    Zhang Y; Chen F; Chen J; Huang S; Chen J; Huang J; Li N; Sun S; Chu X; Zha L
    Mol Nutr Food Res; 2016 Jul; 60(7):1532-43. PubMed ID: 27005845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. p22-phox-deficient chronic granulomatous disease: reconstitution by retrovirus-mediated expression and identification of a biosynthetic intermediate of gp91-phox.
    Porter CD; Parkar MH; Verhoeven AJ; Levinsky RJ; Collins MK; Kinnon C
    Blood; 1994 Oct; 84(8):2767-75. PubMed ID: 7919388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The X-CGD PLB-985 Cell Model for NOX2 Structure-Function Analysis.
    Beaumel S; Stasia MJ
    Methods Mol Biol; 2019; 1982():153-171. PubMed ID: 31172472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: implications for chronic granulomatous disease.
    Sanmun D; Witasp E; Jitkaew S; Tyurina YY; Kagan VE; Ahlin A; Palmblad J; Fadeel B
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C621-31. PubMed ID: 19570889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.
    Fernandez-Boyanapalli RF; Frasch SC; Thomas SM; Malcolm KC; Nicks M; Harbeck RJ; Jakubzick CV; Nemenoff R; Henson PM; Holland SM; Bratton DL
    J Allergy Clin Immunol; 2015 Feb; 135(2):517-527.e12. PubMed ID: 25498313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimized Generation of Functional Neutrophils and Macrophages from Patient-Specific Induced Pluripotent Stem Cells: Ex Vivo Models of X(0)-Linked, AR22(0)- and AR47(0)- Chronic Granulomatous Diseases.
    Brault J; Goutagny E; Telugu N; Shao K; Baquié M; Satre V; Coutton C; Grunwald D; Brion JP; Barlogis V; Stephan JL; Plantaz D; Hescheler J; Krause KH; Sarić T; Stasia MJ
    Biores Open Access; 2014 Dec; 3(6):311-26. PubMed ID: 25469316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.