These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 35111644)

  • 1. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.
    Tan R; Sui C; Wang C; Zhu T
    Front Oncol; 2024; 14():1401977. PubMed ID: 38803534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of the glioma grading using radiomics analysis.
    Cho HH; Lee SH; Kim J; Park H
    PeerJ; 2018; 6():e5982. PubMed ID: 30498643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features.
    Ning Z; Luo J; Xiao Q; Cai L; Chen Y; Yu X; Wang J; Zhang Y
    Ann Transl Med; 2021 Feb; 9(4):298. PubMed ID: 33708925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioma Tumor Grading Using Radiomics on Conventional MRI: A Comparative Study of WHO 2021 and WHO 2016 Classification of Central Nervous Tumors.
    Moodi F; Khodadadi Shoushtari F; Ghadimi DJ; Valizadeh G; Khormali E; Salari HM; Ohadi MAD; Nilipour Y; Jahanbakhshi A; Rad HS
    J Magn Reson Imaging; 2024 Sep; 60(3):923-938. PubMed ID: 38031466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain.
    Kumar A; Jha AK; Agarwal JP; Yadav M; Badhe S; Sahay A; Epari S; Sahu A; Bhattacharya K; Chatterjee A; Ganeshan B; Rangarajan V; Moyiadi A; Gupta T; Goda JS
    J Pers Med; 2023 May; 13(6):. PubMed ID: 37373909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin-Slice Magnetic Resonance Imaging-Based Radiomics Signature Predicts Chromosomal 1p/19q Co-deletion Status in Grade II and III Gliomas.
    Kong Z; Jiang C; Zhang Y; Liu S; Liu D; Liu Z; Chen W; Liu P; Yang T; Lyu Y; Zhao D; You H; Wang Y; Ma W; Feng F
    Front Neurol; 2020; 11():551771. PubMed ID: 33192984
    [No Abstract]   [Full Text] [Related]  

  • 11. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An MRI multi-sequence feature imputation and fusion mutual-aid model based on sequence deletion for differentiation of high-grade from low-grade glioma].
    Wu C; Zhong W; Xie J; Yang R; Wu Y; Xu Y; Wang L; Zhen X
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Aug; 44(8):1561-1570. PubMed ID: 39276052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma.
    Yang L; Xu P; Zhang Y; Cui N; Wang M; Peng M; Gao C; Wang T
    Neuroradiology; 2022 Jul; 64(7):1373-1382. PubMed ID: 35037985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combination of radiomics features and VASARI standard to predict glioma grade.
    You W; Mao Y; Jiao X; Wang D; Liu J; Lei P; Liao W
    Front Oncol; 2023; 13():1083216. PubMed ID: 37035137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.
    Dai H; Lu M; Huang B; Tang M; Pang T; Liao B; Cai H; Huang M; Zhou Y; Chen X; Ding H; Feng ST
    Quant Imaging Med Surg; 2021 May; 11(5):1836-1853. PubMed ID: 33936969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning and machine learning predictive models for neurological function after interventional embolization of intracranial aneurysms.
    Peng Y; Wang Y; Wen Z; Xiang H; Guo L; Su L; He Y; Pang H; Zhou P; Zhan X
    Front Neurol; 2024; 15():1321923. PubMed ID: 38327618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-parametric assessment of cardiac magnetic resonance images to distinguish myocardial infarctions: A tensor-based radiomics feature.
    Wang D; Jasim Taher H; Al-Fatlawi M; Abdullah BA; Khayatovna Ismailova M; Abedi-Firouzjah R
    J Xray Sci Technol; 2024; 32(3):735-749. PubMed ID: 38217635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis.
    Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K
    Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.