These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 35111663)

  • 61. CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy.
    Miri SM; Tafsiri E; Cho WCS; Ghaemi A
    Cancer Cell Int; 2020; 20():456. PubMed ID: 32973401
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of Human CRISPR-Engineered CAR-T Cells.
    Agarwal S; Wellhausen N; Levine BL; June CH
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779622
    [TBL] [Abstract][Full Text] [Related]  

  • 63. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy.
    Salas-Mckee J; Kong W; Gladney WL; Jadlowsky JK; Plesa G; Davis MM; Fraietta JA
    Hum Vaccin Immunother; 2019; 15(5):1126-1132. PubMed ID: 30735463
    [TBL] [Abstract][Full Text] [Related]  

  • 64. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells.
    Kamali E; Rahbarizadeh F; Hojati Z; Frödin M
    BMC Biotechnol; 2021 Jan; 21(1):9. PubMed ID: 33514392
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Emerging Therapies for Hepatocellular Carcinoma (HCC).
    Chakraborty E; Sarkar D
    Cancers (Basel); 2022 Jun; 14(11):. PubMed ID: 35681776
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference.
    Barrangou R; Birmingham A; Wiemann S; Beijersbergen RL; Hornung V; Smith Av
    Nucleic Acids Res; 2015 Apr; 43(7):3407-19. PubMed ID: 25800748
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth.
    Nakazawa T; Natsume A; Nishimura F; Morimoto T; Matsuda R; Nakamura M; Yamada S; Nakagawa I; Motoyama Y; Park YS; Tsujimura T; Wakabayashi T; Nakase H
    Cells; 2020 Apr; 9(4):. PubMed ID: 32316275
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRISPR-Cas9 technology and its application in haematological disorders.
    Zhang H; McCarty N
    Br J Haematol; 2016 Oct; 175(2):208-225. PubMed ID: 27619566
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Application of CRISPR/Cas9 technology in sepsis research.
    Wu M; Hu N; Du X; Wei J
    Brief Funct Genomics; 2020 May; 19(3):229-234. PubMed ID: 32058568
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 73. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer.
    Xu C
    Naunyn Schmiedebergs Arch Pharmacol; 2024 Jun; ():. PubMed ID: 38907847
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy.
    Liu Q; Wang C; Zheng Y; Zhao Y; Wang Y; Hao J; Zhao X; Yi K; Shi L; Kang C; Liu Y
    Biomaterials; 2020 Nov; 258():120275. PubMed ID: 32798741
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CRISPR-mediated genome editing and human diseases.
    Cai L; Fisher AL; Huang H; Xie Z
    Genes Dis; 2016 Dec; 3(4):244-251. PubMed ID: 30258895
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma.
    Ramkumar P; Abarientos AB; Tian R; Seyler M; Leong JT; Chen M; Choudhry P; Hechler T; Shah N; Wong SW; Martin TG; Wolf JL; Roybal KT; Pahl A; Taunton J; Wiita AP; Kampmann M
    Blood Adv; 2020 Jul; 4(13):2899-2911. PubMed ID: 32589729
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology.
    Zhang S; Guo F; Yan W; Dai Z; Dong W; Zhou J; Zhang W; Xin F; Jiang M
    Front Bioeng Biotechnol; 2019; 7():459. PubMed ID: 32047743
    [TBL] [Abstract][Full Text] [Related]  

  • 78. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma.
    Palaz F; Ozsoz M; Zarrinpar A; Sahin I
    J Hepatocell Carcinoma; 2024; 11():975-995. PubMed ID: 38832119
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases.
    Abdelnour SA; Xie L; Hassanin AA; Zuo E; Lu Y
    Front Cell Dev Biol; 2021; 9():699597. PubMed ID: 34977000
    [TBL] [Abstract][Full Text] [Related]  

  • 80. CRISPR/Cas9 technology: towards a new generation of improved CAR-T cells for anticancer therapies.
    Ureña-Bailén G; Lamsfus-Calle A; Daniel-Moreno A; Raju J; Schlegel P; Seitz C; Atar D; Antony JS; Handgretinger R; Mezger M
    Brief Funct Genomics; 2020 May; 19(3):191-200. PubMed ID: 31844895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.