BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35111683)

  • 1. Identification of U937
    Si H; Wang J; He R; Yu X; Li S; Huang J; Li J; Tang X; Song X; Tu Z; Zhang Z; Ding K
    Front Oncol; 2021; 11():807200. PubMed ID: 35111683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Hexahydrofuro[3,2-
    Li S; Si H; Song X; Lei C; He X; Wang J; Liu Y; Zhou Y; Song JG; Peng L; Tang X; Chan S; Ren X; Tu Z; Li Z; Wang Z; Zhang Z; Ding K
    J Med Chem; 2022 Aug; 65(15):10674-10690. PubMed ID: 35860875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors.
    Martinez GS; Ross JA; Kirken RA
    Clin Cancer Drugs; 2016; 3(2):131-137. PubMed ID: 29046866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.
    Agarwal A; MacKenzie RJ; Eide CA; Davare MA; Watanabe-Smith K; Tognon CE; Mongoue-Tchokote S; Park B; Braziel RM; Tyner JW; Druker BJ
    Oncogene; 2015 Jun; 34(23):2991-9. PubMed ID: 25109334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activating alleles of JAK3 in acute megakaryoblastic leukemia.
    Walters DK; Mercher T; Gu TL; O'Hare T; Tyner JW; Loriaux M; Goss VL; Lee KA; Eide CA; Wong MJ; Stoffregen EP; McGreevey L; Nardone J; Moore SA; Crispino J; Boggon TJ; Heinrich MC; Deininger MW; Polakiewicz RD; Gilliland DG; Druker BJ
    Cancer Cell; 2006 Jul; 10(1):65-75. PubMed ID: 16843266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia.
    Bergmann AK; Schneppenheim S; Seifert M; Betts MJ; Haake A; Lopez C; Maria Murga Penas E; Vater I; Jayne S; Dyer MJ; Schrappe M; Dührsen U; Ammerpohl O; Russell RB; Küppers R; Dürig J; Siebert R
    Genes Chromosomes Cancer; 2014 Apr; 53(4):309-16. PubMed ID: 24446122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.
    Degryse S; Bornschein S; de Bock CE; Leroy E; Vanden Bempt M; Demeyer S; Jacobs K; Geerdens E; Gielen O; Soulier J; Harrison CJ; Constantinescu SN; Cools J
    Blood; 2018 Jan; 131(4):421-425. PubMed ID: 29187379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High expression of lnc-CRNDE presents as a biomarker for acute myeloid leukemia and promotes the malignant progression in acute myeloid leukemia cell line U937.
    Wang Y; Zhou Q; Ma JJ
    Eur Rev Med Pharmacol Sci; 2018 Feb; 22(3):763-770. PubMed ID: 29461608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome.
    Sato T; Toki T; Kanezaki R; Xu G; Terui K; Kanegane H; Miura M; Adachi S; Migita M; Morinaga S; Nakano T; Endo M; Kojima S; Kiyoi H; Mano H; Ito E
    Br J Haematol; 2008 May; 141(5):681-8. PubMed ID: 18397343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penfluridol triggers cytoprotective autophagy and cellular apoptosis through ROS induction and activation of the PP2A-modulated MAPK pathway in acute myeloid leukemia with different FLT3 statuses.
    Wu SY; Wen YC; Ku CC; Yang YC; Chow JM; Yang SF; Lee WJ; Chien MH
    J Biomed Sci; 2019 Aug; 26(1):63. PubMed ID: 31470848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK3 mutations and HOXA9 expression are important cooperating events in T-cell acute lymphoblastic leukemia.
    de Bock CE; Cools J
    Mol Cell Oncol; 2018; 5(3):e1458014. PubMed ID: 30250904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent effect of taxol on proliferation, apoptosis and nitric oxide production in MHH225 CD34 positive and U937 CD34 negative human leukaemia cells.
    Al-alami O; Sammons J; Martin JH; Hassan HT
    Leuk Res; 1998 Oct; 22(10):939-45. PubMed ID: 9766754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic cooperation between ABT-263 and MEK1/2 inhibitor: effect on apoptosis and proliferation of acute myeloid leukemia cells.
    Airiau K; Prouzet-Mauléon V; Rousseau B; Pigneux A; Jeanneteau M; Giraudon M; Allou K; Dubus P; Belloc F; Mahon FX
    Oncotarget; 2016 Jan; 7(1):845-59. PubMed ID: 26625317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a constitutively active mutant of JAK3 by retroviral expression screening.
    Choi YL; Kaneda R; Wada T; Fujiwara S; Soda M; Watanabe H; Kurashina K; Hatanaka H; Enomoto M; Takada S; Yamashita Y; Mano H
    Leuk Res; 2007 Feb; 31(2):203-9. PubMed ID: 16790275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML).
    Kindler T; Breitenbuecher F; Kasper S; Estey E; Giles F; Feldman E; Ehninger G; Schiller G; Klimek V; Nimer SD; Gratwohl A; Choudhary CR; Mueller-Tidow C; Serve H; Gschaidmeier H; Cohen PS; Huber C; Fischer T
    Blood; 2005 Jan; 105(1):335-40. PubMed ID: 15345593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells.
    Xu L; Zhang Y; Gao M; Wang G; Fu Y
    Biochem Biophys Res Commun; 2016 Apr; 472(4):662-8. PubMed ID: 26920060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound C induces autophagy and apoptosis in parental and hydroquinone-selected malignant leukemia cells through the ROS/p38 MAPK/AMPK/TET2/FOXP3 axis.
    Chiou JT; Huang CH; Lee YC; Wang LJ; Shi YJ; Chen YJ; Chang LS
    Cell Biol Toxicol; 2020 Aug; 36(4):315-331. PubMed ID: 31900833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.