These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35111730)

  • 1. Design of Organic Electronic Materials With a Goal-Directed Generative Model Powered by Deep Neural Networks and High-Throughput Molecular Simulations.
    Kwak HS; An Y; Giesen DJ; Hughes TF; Brown CT; Leswing K; Abroshan H; Halls MD
    Front Chem; 2021; 9():800370. PubMed ID: 35111730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Learning Accelerates Design and Optimization of Hole-Transporting Materials for Organic Electronics.
    Abroshan H; Kwak HS; An Y; Brown C; Chandrasekaran A; Winget P; Halls MD
    Front Chem; 2021; 9():800371. PubMed ID: 35111731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Discovery of TTF Molecules with Deep Generative Models.
    Yakubovich A; Odinokov A; Nikolenko S; Jung Y; Choi H
    Front Chem; 2021; 9():800133. PubMed ID: 35004615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Cloud-Based Free-Energy Calculations, Synthetically Aware Enumerations, and Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration and Optimization.
    Ghanakota P; Bos PH; Konze KD; Staker J; Marques G; Marshall K; Leswing K; Abel R; Bhat S
    J Chem Inf Model; 2020 Sep; 60(9):4311-4325. PubMed ID: 32484669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput property-driven generative design of functional organic molecules.
    Westermayr J; Gilkes J; Barrett R; Maurer RJ
    Nat Comput Sci; 2023 Feb; 3(2):139-148. PubMed ID: 38177626
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in Deep Learning for Property-driven Drug Design.
    Born J; Manica M
    Curr Med Chem; 2021; 28(38):7862-7886. PubMed ID: 34325627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative Neural Networks.
    Zhao Y; Al-Fahdi M; Hu M; Siriwardane EMD; Song Y; Nasiri A; Hu J
    Adv Sci (Weinh); 2021 Oct; 8(20):e2100566. PubMed ID: 34351707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhang J; Chen H
    J Chem Inf Model; 2022 Jul; 62(14):3291-3306. PubMed ID: 35793555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative organic electronic molecular design informed by quantum chemistry.
    Li CH; Tabor DP
    Chem Sci; 2023 Oct; 14(40):11045-11055. PubMed ID: 37860647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Strategies for Accelerated Materials Design.
    Pollice R; Dos Passos Gomes G; Aldeghi M; Hickman RJ; Krenn M; Lavigne C; Lindner-D'Addario M; Nigam A; Ser CT; Yao Z; Aspuru-Guzik A
    Acc Chem Res; 2021 Feb; 54(4):849-860. PubMed ID: 33528245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of Hole Transport Materials via Exciton-Driven Cyclization.
    Bell BM; Clark MB; Devore DD; De Vries TS; Froese RD; Gray KC; Jackson DHK; Kuech TF; Na HY; Kearns KL; Lee KJ; Mukhopadhyay S; Rachford AA; Spencer LP; Woodward WHH
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13369-13379. PubMed ID: 28350953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds.
    Korshunova M; Huang N; Capuzzi S; Radchenko DS; Savych O; Moroz YS; Wells CI; Willson TM; Tropsha A; Isayev O
    Commun Chem; 2022 Oct; 5(1):129. PubMed ID: 36697952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel deep generative simultaneous recurrent model for efficient representation learning.
    Alam M; Vidyaratne L; Iftekharuddin KM
    Neural Netw; 2018 Nov; 107():12-22. PubMed ID: 30143328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advancement in Boron-Based Efficient and Pure Blue Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.
    Lee H; Karthik D; Lampande R; Ryu JH; Kwon JH
    Front Chem; 2020; 8():373. PubMed ID: 32509723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic generative modeling and reinforcement learning extract the intrinsic features of animal behavior.
    Mori K; Yamauchi N; Wang H; Sato K; Toyoshima Y; Iino Y
    Neural Netw; 2022 Jan; 145():107-120. PubMed ID: 34735889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Enabled Tailor-Made Design of Application-Specific Metal-Organic Frameworks.
    Zhang X; Zhang K; Lee Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):734-743. PubMed ID: 31820913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Virtual Screening of Host Materials and Rational Device Engineering for Highly Efficient Solution-Processed Organic Light-Emitting Diodes.
    Dubey DK; Thakur D; Yadav RAK; Ram Nagar M; Liang TW; Ghosh S; Jou JH
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26204-26217. PubMed ID: 34048214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.