These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 35111779)

  • 1. The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword.
    Wehedy E; Shatat IF; Al Khodor S
    Front Med (Lausanne); 2021; 8():790783. PubMed ID: 35111779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of CKD on Uremic Toxins and Gut Microbiota.
    Rysz J; Franczyk B; Ławiński J; Olszewski R; Ciałkowska-Rysz A; Gluba-Brzózka A
    Toxins (Basel); 2021 Mar; 13(4):. PubMed ID: 33807343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial metabolites and cardiovascular risk in children with chronic kidney disease.
    Schlender J; Behrens F; McParland V; Müller D; Wilck N; Bartolomaeus H; Holle J
    Mol Cell Pediatr; 2021 Oct; 8(1):17. PubMed ID: 34677718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostasis in the Gut Microbiota in Chronic Kidney Disease.
    Bhargava S; Merckelbach E; Noels H; Vohra A; Jankowski J
    Toxins (Basel); 2022 Sep; 14(10):. PubMed ID: 36287917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins.
    Lau WL; Savoj J; Nakata MB; Vaziri ND
    Clin Sci (Lond); 2018 Mar; 132(5):509-522. PubMed ID: 29523750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiome modulation to correct uremic toxins and to preserve kidney functions.
    Caggiano G; Cosola C; Di Leo V; Gesualdo M; Gesualdo L
    Curr Opin Nephrol Hypertens; 2020 Jan; 29(1):49-56. PubMed ID: 31725010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids.
    Felizardo RJF; Watanabe IKM; Dardi P; Rossoni LV; Câmara NOS
    Pharmacol Res; 2019 Mar; 141():366-377. PubMed ID: 30639376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic Kidney Disease, Gut Dysbiosis, and Constipation: A Burdensome Triplet.
    Ikee R; Sasaki N; Yasuda T; Fukazawa S
    Microorganisms; 2020 Nov; 8(12):. PubMed ID: 33255763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities.
    Coutinho-Wolino KS; Melo MFS; Mota JC; Mafra D; Guimarães JT; Stockler-Pinto MB
    Nutr Rev; 2024 Jan; 82(2):248-261. PubMed ID: 37164634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective.
    Lohia S; Vlahou A; Zoidakis J
    Toxins (Basel); 2022 Feb; 14(3):. PubMed ID: 35324673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary strategies for gut-derived protein-bound uremic toxins and cardio-metabolic risk factors in chronic kidney disease: A focus on dietary fibers.
    Melekoglu E; Samur FG
    Crit Rev Food Sci Nutr; 2023; 63(19):3994-4008. PubMed ID: 34704501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiota issue in CKD: how promising are gut-targeted approaches?
    Cosola C; Rocchetti MT; Sabatino A; Fiaccadori E; Di Iorio BR; Gesualdo L
    J Nephrol; 2019 Feb; 32(1):27-37. PubMed ID: 30069677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut Microbiota and Their Derived Metabolites, a Search for Potential Targets to Limit Accumulation of Protein-Bound Uremic Toxins in Chronic Kidney Disease.
    Steenbeke M; Valkenburg S; Gryp T; Van Biesen W; Delanghe JR; Speeckaert MM; Glorieux G
    Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and rationale for an open-label, randomized, controlled pilot trial to evaluate the changes in blood uremic toxins in patients with chronic kidney disease by dietary therapy with sake lees.
    Tokumaru T; Toyama T; Nakade Y; Ogura H; Oshima M; Nakagawa S; Furuichi M; Kitajima S; Sakai N; Shimizu M; Iwata Y; Wada T
    Clin Exp Nephrol; 2024 May; 28(5):440-446. PubMed ID: 38340247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal Adenine-Induced Chronic Kidney Disease Programs Hypertension in Adult Male Rat Offspring: Implications of Nitric Oxide and Gut Microbiome Derived Metabolites.
    Hsu CN; Yang HW; Hou CY; Chang-Chien GP; Lin S; Tain YL
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33008046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreasing microbiota-derived uremic toxins to improve CKD outcomes.
    Beker BM; Colombo I; Gonzalez-Torres H; Musso CG
    Clin Kidney J; 2022 Dec; 15(12):2214-2219. PubMed ID: 36381370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The clinical impact of gut microbiota in chronic kidney disease.
    Kim SM; Song IH
    Korean J Intern Med; 2020 Nov; 35(6):1305-1316. PubMed ID: 32872729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Gut Microbiota in Children with Kidney Disease.
    Tain YL; Hsu CN
    Children (Basel); 2023 Jan; 10(2):. PubMed ID: 36832398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oat Dietary Fiber Delays the Progression of Chronic Kidney Disease in Mice by Modulating the Gut Microbiota and Reducing Uremic Toxin Levels.
    Xia J; Zhang Y; Zhang S; Lu C; Huan H; Guan X
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38836841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Dietary Fiber and Gut Microbiome Modulation in Progression of Chronic Kidney Disease.
    Ranganathan N; Anteyi E
    Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.