These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35112119)

  • 41. The roles of Brønsted acidity in low-temperature catalytic oxidation of NO over acidic zeolites with H
    Cui R; Ma S; Yang B; Li S; Li J; Pei T; Wang J; Sun S; Mi C
    Chemosphere; 2020 Jul; 251():126561. PubMed ID: 32443240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing the Brønsted Acidity of the External Surface of Faujasite-Type Zeolites.
    Lakiss L; Vicente A; Gilson JP; Valtchev V; Mintova S; Vimont A; Bedard R; Abdo S; Bricker J
    Chemphyschem; 2020 Aug; 21(16):1873-1881. PubMed ID: 32176421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective formation of propylene by hexane cracking over MCM-68 zeolite catalyst.
    Inagaki S; Takechi K; Kubota Y
    Chem Commun (Camb); 2010 Apr; 46(15):2662-4. PubMed ID: 20461852
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modular organic structure-directing agents for the synthesis of zeolites.
    Simancas R; Dari D; Velamazán N; Navarro MT; Cantín A; Jordá JL; Sastre G; Corma A; Rey F
    Science; 2010 Nov; 330(6008):1219-22. PubMed ID: 21109667
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO
    Maity A; Chaudhari S; Titman JJ; Polshettiwar V
    Nat Commun; 2020 Jul; 11(1):3828. PubMed ID: 32737304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.
    Gounder R; Iglesia E
    J Am Chem Soc; 2009 Feb; 131(5):1958-71. PubMed ID: 19146372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organic Structure-Directing Agent-Free Synthesis of Mordenite-Type Zeolites Driven by Al-Rich Amorphous Aluminosilicates.
    Xiao T; Yabushita M; Nishitoba T; Osuga R; Yoshida M; Matsubara M; Maki S; Kanie K; Yokoi T; Cao W; Muramatsu A
    ACS Omega; 2021 Mar; 6(8):5176-5182. PubMed ID: 33681559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of Co and Fe-MCM-56 catalysts for NH
    Grzybek J; Gil B; Roth WJ; Skoczek M; Kowalczyk A; Chmielarz L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():281-288. PubMed ID: 29459158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents.
    Kore R; Srivastava R; Satpati B
    Chemistry; 2014 Sep; 20(36):11511-21. PubMed ID: 25056112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the Role of Acidity in Bulk and Nanosheet [T]MFI (T=Al
    Meng L; Zhu X; Mezari B; Pestman R; Wannapakdee W; Hensen EJM
    ChemCatChem; 2017 Oct; 9(20):3942-3954. PubMed ID: 29201243
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile Synthesis, Characterization, and Catalytic Behavior of a Large-Pore Zeolite with the IWV Framework.
    Schmidt JE; Chen CY; Brand SK; Zones SI; Davis ME
    Chemistry; 2016 Mar; 22(12):4022-9. PubMed ID: 26833857
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.
    Zheng A; Li S; Liu SB; Deng F
    Acc Chem Res; 2016 Apr; 49(4):655-63. PubMed ID: 26990961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents.
    Schmidt JE; Deem MW; Davis ME
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8372-4. PubMed ID: 24961789
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constrained and Open Mesoporosity in Polypropylene Cracking: Insight From Spectroscopic Investigations of Acidity, Diffusion, and Activity.
    Tarach KA; Jajko G; Palomino M; Rey F; Góra-Marek K
    Langmuir; 2024 Apr; 40(13):6918-6932. PubMed ID: 38520471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Bottom-Up Strategy for the Synthesis of Highly Siliceous Faujasite-Type Zeolite.
    Zhu D; Wang L; Fan D; Yan N; Huang S; Xu S; Guo P; Yang M; Zhang J; Tian P; Liu Z
    Adv Mater; 2020 Jul; 32(26):e2000272. PubMed ID: 32430991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Charge distribution and conformational stability effects of organic structure-directing agents on zeolite synthesis.
    Jo D; Hong SB
    Chem Commun (Camb); 2018 Jan; 54(5):487-490. PubMed ID: 29260805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Data-Driven Design of Biselective Templates for Intergrowth Zeolites.
    Schwalbe-Koda D; Corma A; Román-Leshkov Y; Moliner M; Gómez-Bombarelli R
    J Phys Chem Lett; 2021 Nov; 12(43):10689-10694. PubMed ID: 34709806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds.
    Rodríguez-Fernández A; Di Iorio JR; Paris C; Boronat M; Corma A; Román-Leshkov Y; Moliner M
    Chem Sci; 2020 Sep; 11(37):10225-10235. PubMed ID: 34094288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques.
    Peng L; Liu Y; Kim N; Readman JE; Grey CP
    Nat Mater; 2005 Mar; 4(3):216-9. PubMed ID: 15711551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.