BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35112260)

  • 1. Unmanned aerial vehicle images in the machine learning for agave detection.
    Escobar-Flores JG; Sandoval S; Gámiz-Romero E
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61662-61673. PubMed ID: 35112260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable AI based automated segmentation and multi-stage classification of gastroesophageal reflux using machine learning techniques.
    Maity R; Raja Sankari VM; U S; N A R; Salvador AL
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38901416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms.
    Liu S; Jin X; Nie C; Wang S; Yu X; Cheng M; Shao M; Wang Z; Tuohuti N; Bai Y; Liu Y
    Plant Physiol; 2021 Nov; 187(3):1551-1576. PubMed ID: 34618054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intelligent identification of livestock, a source of
    Xue J; Xia S; Li Z; Wang X; Huang L; He R; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 May; 35(2):121-127. PubMed ID: 37253560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species level mapping of a seagrass bed using an unmanned aerial vehicle and deep learning technique.
    Tahara S; Sudo K; Yamakita T; Nakaoka M
    PeerJ; 2022; 10():e14017. PubMed ID: 36275465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated mapping of
    Galuszynski NC; Duker R; Potts AJ; Kattenborn T
    PeerJ; 2022; 10():e14219. PubMed ID: 36262418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation Scale Effect Analysis in the Object-Oriented Method of High-Spatial-Resolution Image Classification.
    Hao S; Cui Y; Wang J
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Agave Counting Methodology Based on Mathematical Morphology and Images Acquired through Unmanned Aerial Vehicles.
    Calvario G; Alarcón TE; Dalmau O; Sierra B; Hernandez C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DAR-Net: Dense Attentional Residual Network for Vehicle Detection in Aerial Images.
    Li K; Wang B
    Comput Intell Neurosci; 2021; 2021():6340823. PubMed ID: 34868295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Object Detection and Classification by UAV Equipped With SAR.
    Gromada K; Siemiątkowska B; Stecz W; Płochocki K; Woźniak K
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.
    Sandino J; Wooler A; Gonzalez F
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning.
    Lin Z; Guo W
    Front Plant Sci; 2020; 11():534853. PubMed ID: 32983210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vehicle Image Detection Method Using Deep Learning in UAV Video.
    Wang X
    Comput Intell Neurosci; 2022; 2022():8202535. PubMed ID: 35178081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN.
    An F; Li X; Ma X
    Oxid Med Cell Longev; 2021; 2021():6280690. PubMed ID: 33688390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.