BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35112289)

  • 1. Bioenergetic Metabolism In Osteoblast Differentiation.
    Shen L; Hu G; Karner CM
    Curr Osteoporos Rep; 2022 Feb; 20(1):53-64. PubMed ID: 35112289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation.
    Shen L; Yu Y; Zhou Y; Pruett-Miller SM; Zhang GF; Karner CM
    Elife; 2022 Mar; 11():. PubMed ID: 35261338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.
    Guntur AR; Le PT; Farber CR; Rosen CJ
    Endocrinology; 2014 May; 155(5):1589-95. PubMed ID: 24437492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt signaling and cellular metabolism in osteoblasts.
    Karner CM; Long F
    Cell Mol Life Sci; 2017 May; 74(9):1649-1657. PubMed ID: 27888287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status.
    Nandy A; Helderman RCM; Thapa S; Jayapalan S; Richards A; Narayani N; Czech MP; Rosen CJ; Rendina-Ruedy E
    Bone Res; 2023 Nov; 11(1):62. PubMed ID: 38001111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation.
    Wei J; Shimazu J; Makinistoglu MP; Maurizi A; Kajimura D; Zong H; Takarada T; Lezaki T; Pessin JE; Hinoi E; Karsenty G
    Cell; 2015 Jun; 161(7):1576-1591. PubMed ID: 26091038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteometabolism: Metabolic Alterations in Bone Pathologies.
    Srivastava RK; Sapra L; Mishra PK
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Real-Time Cell Metabolic Flux Analyzer to Monitor Osteoblast Bioenergetics.
    Jayapalan S; Nandy A; Rendina-Ruedy E
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untargeted metabolomics in primary murine bone marrow stromal cells reveals distinct profile throughout osteoblast differentiation.
    Misra BB; Jayapalan S; Richards AK; Helderman RCM; Rendina-Ruedy E
    Metabolomics; 2021 Sep; 17(10):86. PubMed ID: 34537901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Metabolism of the Osteoblast: Implications for Osteoporosis.
    Lee WC; Guntur AR; Long F; Rosen CJ
    Endocr Rev; 2017 Jun; 38(3):255-266. PubMed ID: 28472361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Metabolism of Osteocytes.
    Karthik V; Guntur AR
    Curr Osteoporos Rep; 2021 Aug; 19(4):444-451. PubMed ID: 34117625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High glucose-induced inhibition of osteoblast like MC3T3-E1 differentiation promotes mitochondrial perturbations.
    Medeiros C; Wallace JM
    PLoS One; 2022; 17(6):e0270001. PubMed ID: 35714142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Metabolism During Osteogenic Differentiation: The Role of Akt.
    Smith CO; Eliseev RA
    Stem Cells Dev; 2021 Feb; 30(3):149-162. PubMed ID: 33307974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of bone homeostasis by glucose].
    Fukasawa K; Hinoi E
    Clin Calcium; 2016 Aug; 26(8):1165-70. PubMed ID: 27461500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast Bioenergetics and Global Energy Homeostasis.
    Verardo AR; Clemens TL
    Nestle Nutr Inst Workshop Ser; 2018; 89():47-54. PubMed ID: 29991031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid metabolism by the osteoblast.
    Kushwaha P; Wolfgang MJ; Riddle RC
    Bone; 2018 Oct; 115():8-14. PubMed ID: 28863948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of osteoblasts in energy homeostasis.
    Dirckx N; Moorer MC; Clemens TL; Riddle RC
    Nat Rev Endocrinol; 2019 Nov; 15(11):651-665. PubMed ID: 31462768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPARδ-mediated mitochondrial rewiring of osteoblasts determines bone mass.
    Müller DIH; Stoll C; Palumbo-Zerr K; Böhm C; Krishnacoumar B; Ipseiz N; Taubmann J; Zimmermann M; Böttcher M; Mougiakakos D; Tuckermann J; Djouad F; Schett G; Scholtysek C; Krönke G
    Sci Rep; 2020 May; 10(1):8428. PubMed ID: 32439961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLC1A5 provides glutamine and asparagine necessary for bone development in mice.
    Sharma D; Yu Y; Shen L; Zhang GF; Karner CM
    Elife; 2021 Oct; 10():. PubMed ID: 34647520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research progress of key signaling pathways in osteoblast differentiation and bone formation regulation].
    Xu L; Kong Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Dec; 28(12):1484-9. PubMed ID: 25826891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.