These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35112378)

  • 61. Preliminary assessment of safety and efficacy in proof-of-concept, randomized clinical trial of tanezumab for chronic prostatitis/chronic pelvic pain syndrome.
    Nickel JC; Atkinson G; Krieger JN; Mills IW; Pontari M; Shoskes DA; Crook TJ
    Urology; 2012 Nov; 80(5):1105-10. PubMed ID: 23010344
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety.
    Schmelz M; Mantyh P; Malfait AM; Farrar J; Yaksh T; Tive L; Viktrup L
    Pain; 2019 Oct; 160(10):2210-2220. PubMed ID: 31145219
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Population pharmacokinetic and exploratory exposure-response analysis of the fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection in patients with HER2-positive early breast cancer in the FeDeriCa study.
    Wang B; Deng R; Hennig S; Badovinac Crnjevic T; Kaewphluk M; Kågedal M; Quartino AL; Girish S; Li C; Kirschbrown WP
    Cancer Chemother Pharmacol; 2021 Sep; 88(3):499-512. PubMed ID: 34106303
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assessment of dose proportionality, absolute bioavailability, and immunogenicity response of CTLA4Ig (BMS-188667), a novel immunosuppressive agent, following subcutaneous and intravenous administration to rats.
    Srinivas NR; Shyu WC; Weiner RS; Warner G; Comereski C; Tay LK; Greene DS; Barbhaiya RH
    Pharm Res; 1997 Jul; 14(7):911-6. PubMed ID: 9244149
    [TBL] [Abstract][Full Text] [Related]  

  • 65. General Safety and Tolerability of Subcutaneous Tanezumab for Osteoarthritis: A Pooled Analysis of Three Randomized, Placebo-Controlled Trials.
    Berenbaum F; Schnitzer TJ; Kivitz AJ; Viktrup L; Hickman A; Pixton G; Brown MT; Davignon I; West CR
    Arthritis Care Res (Hoboken); 2022 Jun; 74(6):918-928. PubMed ID: 33973384
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Serological biomarker profiles of rapidly progressive osteoarthritis in tanezumab-treated patients.
    Karsdal MA; Verburg KM; West CR; Bay-Jensen AC; Keller DS; Arends RHGP
    Osteoarthritis Cartilage; 2019 Mar; 27(3):484-492. PubMed ID: 30576794
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Population pharmacokinetics of subcutaneous C1-inhibitor for prevention of attacks in patients with hereditary angioedema.
    Pawaskar D; Tortorici MA; Zuraw B; Craig T; Cicardi M; Longhurst H; Li HH; Lumry WR; Martinez-Saguer I; Jacobs J; Bernstein JA; Riedl MA; Katelaris CH; Keith PK; Feussner A; Sidhu J
    Clin Exp Allergy; 2018 Oct; 48(10):1325-1332. PubMed ID: 29998524
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Postoperative Outcome of Patients Who Underwent Total Joint Replacement During the Tanezumab Phase 3 Osteoarthritis Development Program: A 24-Week Observational Study.
    Mont MA; Carrino JA; Nemeth MA; Burr A; Yamabe T; Viktrup L; Brown MT; West CR; Verburg KM
    Surg Technol Int; 2021 May; 38():467-477. PubMed ID: 34043229
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pharmacokinetics and analgesic effects of intravenous, intramuscular or subcutaneous buprenorphine in dogs undergoing ovariohysterectomy: a randomized, prospective, masked, clinical trial.
    Steagall PV; Ruel HLM; Yasuda T; Monteiro BP; Watanabe R; Evangelista MC; Beaudry F
    BMC Vet Res; 2020 May; 16(1):154. PubMed ID: 32448336
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling.
    Hu S; D'Argenio DZ
    J Pharmacokinet Pharmacodyn; 2020 Oct; 47(5):385-409. PubMed ID: 32500362
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pharmacokinetics of an anti-TFPI monoclonal antibody (concizumab) blocking the TFPI interaction with the active site of FXa in Cynomolgus monkeys after iv and sc administration.
    Agersø H; Overgaard RV; Petersen MB; Hansen L; Hermit MB; Sørensen MH; Petersen LC; Hilden I
    Eur J Pharm Sci; 2014 Jun; 56():65-9. PubMed ID: 24568891
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of Monoclonal Antibodies against Nerve Growth Factor on Healthy Bone and Joint Tissues in Mice, Rats, and Monkeys: Histopathologic, Biomarker, and Microcomputed Tomographic Assessments.
    Gropp KE; Carlson CS; Evans MG; Bagi CM; Reagan WJ; Hurst SI; Shelton DL; Zorbas MA
    Toxicol Pathol; 2018 Jun; 46(4):408-420. PubMed ID: 29768985
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Population PK and IgE pharmacodynamic analysis of a fully human monoclonal antibody against IL4 receptor.
    Kakkar T; Sung C; Gibiansky L; Vu T; Narayanan A; Lin SL; Vincent M; Banfield C; Colbert A; Hoofring S; Starcevic M; Ma P
    Pharm Res; 2011 Oct; 28(10):2530-42. PubMed ID: 21604075
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors.
    Abdiche YN; Malashock DS; Pons J
    Protein Sci; 2008 Aug; 17(8):1326-35. PubMed ID: 18505735
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Based on minimal clinically important difference values, a moderate dose of tanezumab may be a better option for treating hip or knee osteoarthritis: a meta-analysis of randomized controlled trials.
    Zhao D; Luo MH; Pan JK; Zeng LF; Liang GH; Han YH; Liu J; Yang WY
    Ther Adv Musculoskelet Dis; 2022; 14():1759720X211067639. PubMed ID: 35069811
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Relative efficacy and tolerability of 2.5, 5, and 10 mg tanezumab for the treatment of osteoarthritis: A Bayesian network meta-analysis of randomized controlled trials based on patient withdrawal.
    Song GG; Lee YH
    Int J Clin Pharmacol Ther; 2021 Feb; 59(2):147-155. PubMed ID: 33141017
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tanezumab reduces osteoarthritic hip pain: results of a randomized, double-blind, placebo-controlled phase III trial.
    Brown MT; Murphy FT; Radin DM; Davignon I; Smith MD; West CR
    Arthritis Rheum; 2013 Jul; 65(7):1795-803. PubMed ID: 23553790
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models?
    Miller RE; Block JA; Malfait AM
    Curr Opin Rheumatol; 2017 Jan; 29(1):110-118. PubMed ID: 27672741
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pooled analysis of tanezumab efficacy and safety with subgroup analyses of phase III clinical trials in patients with osteoarthritis pain of the knee or hip.
    Tive L; Bello AE; Radin D; Schnitzer TJ; Nguyen H; Brown MT; West CR
    J Pain Res; 2019; 12():975-995. PubMed ID: 30936738
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A multiple-dose toxicity study of tanezumab in cynomolgus monkeys.
    Zorbas M; Hurst S; Shelton D; Evans M; Finco D; Butt M
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):334-42. PubMed ID: 21130822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.