These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35112451)

  • 21. Biocompatible tumor-targeting nanocomposites based on CuS for tumor imaging and photothermal therapy.
    Liang L; Peng S; Yuan Z; Wei C; He Y; Zheng J; Gu Y; Chen H
    RSC Adv; 2018 Feb; 8(11):6013-6026. PubMed ID: 35539596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy.
    Han L; Zhang Y; Chen XW; Shu Y; Wang JH
    J Mater Chem B; 2016 Jan; 4(1):105-112. PubMed ID: 32262813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible BSA-Ag
    Zhao J; Zhang Q; Liu W; Shan G; Wang X
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112295. PubMed ID: 34952286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration.
    Xiao Y; Peng J; Liu Q; Chen L; Shi K; Han R; Yang Q; Zhong L; Zha R; Qu Y; Qian Z
    Theranostics; 2020; 10(4):1500-1513. PubMed ID: 32042318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antifouling Dendrimer-Entrapped Copper Sulfide Nanoparticles Enable Photoacoustic Imaging-Guided Targeted Combination Therapy of Tumors and Tumor Metastasis.
    Ouyang Z; Li D; Xiong Z; Song C; Gao Y; Liu R; Shen M; Shi X
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6069-6080. PubMed ID: 33501834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo.
    Peng S; He Y; Er M; Sheng Y; Gu Y; Chen H
    Biomater Sci; 2017 Feb; 5(3):475-484. PubMed ID: 28078340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BSA-templated ultrasmall Ag/Gd
    Wang R; Wang J; Wang X; Song G; Ye L; Gu W
    Biomater Sci; 2022 Aug; 10(16):4508-4514. PubMed ID: 35781471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy.
    Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J
    Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HSA-MnO
    Yan Z; Zhang X; Liu Y; Shen Y; Li N; Jia Q; Ji Y; Zhang P; Zhao L; Meng Z
    Technol Cancer Res Treat; 2022; 21():15330338221106557. PubMed ID: 35702054
    [No Abstract]   [Full Text] [Related]  

  • 30. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy.
    Bai J; Liu Y; Jiang X
    Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy.
    Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X
    Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radionuclide
    Zhang X; Yan Z; Meng Z; Li N; Jia Q; Shen Y; Ji Y
    Front Oncol; 2022; 12():889284. PubMed ID: 35957867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma.
    Ji B; Cai H; Yang Y; Peng F; Song M; Sun K; Yan F; Liu Y
    Acta Biomater; 2020 Jul; 111():363-372. PubMed ID: 32434082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CuS Nanodot-Loaded Thermosensitive Hydrogel for Anticancer Photothermal Therapy.
    Fu JJ; Zhang JY; Li SP; Zhang LM; Lin ZX; Liang L; Qin AP; Yu XY
    Mol Pharm; 2018 Oct; 15(10):4621-4631. PubMed ID: 30179511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomineralization of Versatile CuS/Gd2 O3 Hybrid Nanoparticles for MR Imaging and Antitumor Photothermal Chemotherapy.
    Zhao HX; Wang H; Zou Q; Sun SK; Yu C; Zhang X; Fu YY
    Chem Asian J; 2016 Sep; 11(17):2458-69. PubMed ID: 27428708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy.
    Huang S; Wu Y; Li C; Xu L; Huang J; Huang Y; Cheng W; Xue B; Zhang L; Liang S; Jin X; Zhu X; Xiong S; Su Y; Wang H
    Nanoscale; 2021 Sep; 13(35):15021-15030. PubMed ID: 34533142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cetuximab-modified CuS nanoparticles integrating near-infrared-II-responsive photothermal therapy and anti-vessel treatment.
    Li B; Jiang Z; Xie D; Wang Y; Lao X
    Int J Nanomedicine; 2018; 13():7289-7302. PubMed ID: 30510418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of synergistic therapy system with multiple therapeutic effects based on CuS@Tf nanodots.
    Zhu C; Yin X; Li X; Wang Y
    J Inorg Biochem; 2020 Aug; 209():111100. PubMed ID: 32502874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy.
    Zhang C; Sun W; Wang Y; Xu F; Qu J; Xia J; Shen M; Shi X
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9107-9117. PubMed ID: 32003962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical diagnostic imaging and therapy for thyroid cancer.
    Shao C; Li Z; Zhang C; Zhang W; He R; Xu J; Cai Y
    Mater Today Bio; 2022 Dec; 17():100441. PubMed ID: 36388462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.