These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35112752)

  • 1. Combining photoperiod and thermal responses to predict phenological mismatch for introduced insects.
    Grevstad FS; Wepprich T; Barker B; Coop LB; Shaw R; Bourchier RS
    Ecol Appl; 2022 Apr; 32(3):e2557. PubMed ID: 35112752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The consequences of photoperiodism for organisms in new climates.
    Grevstad FS; Coop LB
    Ecol Appl; 2015 Sep; 25(6):1506-17. PubMed ID: 26552260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient.
    Wepprich T; Grevstad FS
    Environ Entomol; 2021 Apr; 50(2):306-316. PubMed ID: 33346818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly.
    Lindestad O; Wheat CW; Nylin S; Gotthard K
    Ecology; 2019 Jan; 100(1):e02550. PubMed ID: 30375642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Photoperiod on Diapause Induction in Hypena opulenta (Lepidoptera: Erebidae), a Biological Control Agent Against Invasive Swallow-Worts in North America.
    Jones IM; Seehausen ML; Bourchier RS; Smith SM
    Environ Entomol; 2020 Jun; 49(3):580-585. PubMed ID: 32270200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diapause Termination in Invasive Populations of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) in Response to Photoperiod.
    McDougall RN; Ogburn EC; Walgenbach JF; Nielsen AL
    Environ Entomol; 2021 Dec; 50(6):1400-1406. PubMed ID: 34458900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.).
    Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC
    Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests.
    Peffers CS; Pomeroy LW; Meuti ME
    J Med Entomol; 2021 Jul; 58(4):1610-1618. PubMed ID: 33835160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi.
    Kosumi T; Takeda M
    Naturwissenschaften; 2017 Aug; 104(9-10):70. PubMed ID: 28791459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle (Leptinotarsa decemlineata).
    Lehmann P; Lyytinen A; Sinisalo T; Lindström L
    J Insect Physiol; 2012 Aug; 58(8):1146-58. PubMed ID: 22705255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments.
    Buckley LB; Arakaki AJ; Cannistra AF; Kharouba HM; Kingsolver JG
    Integr Comp Biol; 2017 Nov; 57(5):988-998. PubMed ID: 28662575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.).
    Stoeckli S; Hirschi M; Spirig C; Calanca P; Rotach MW; Samietz J
    PLoS One; 2012; 7(4):e35723. PubMed ID: 22539997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity in Photoperiodism:
    Lankinen P; Kastally C; Hoikkala A
    J Biol Rhythms; 2022 Oct; 37(5):516-527. PubMed ID: 35924307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number.
    Levy RC; Kozak GM; Wadsworth CB; Coates BS; Dopman EB
    J Evol Biol; 2015 Jan; 28(1):40-53. PubMed ID: 25430782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary Shift of Insect Diapause Strategy in a Warming Climate: An Intra-Population Evidence from Asian Corn Borer.
    Wang L; Liu K; Zhao X; Zhang T; Yuan M; He K
    Biology (Basel); 2023 May; 12(6):. PubMed ID: 37372047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly.
    Kerr NZ; Wepprich T; Grevstad FS; Dopman EB; Chew FS; Crone EE
    Glob Chang Biol; 2020 Apr; 26(4):2014-2027. PubMed ID: 31833162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predation and Climate Limit Establishment Success of the Kyushu Strain of the Biological Control Agent Aphalara itadori (Hemiptera: Aphalaridae) in the Northeastern United States.
    Andersen JC; Elkinton JS
    Environ Entomol; 2022 Jun; 51(3):545-556. PubMed ID: 35551377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe.
    Paolucci S; van de Zande L; Beukeboom LW
    J Evol Biol; 2013 Apr; 26(4):705-18. PubMed ID: 23496837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological mechanism of climate-mediated selection in a rapidly evolving invasive species.
    Mushegian AA; Neupane N; Batz Z; Mogi M; Tuno N; Toma T; Miyagi I; Ries L; Armbruster PA
    Ecol Lett; 2021 Apr; 24(4):698-707. PubMed ID: 33554374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.