These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 35112794)
1. High-Efficiency Capture of Cells by Softening Cell Membrane. Ming R; Jiang Y; Fan J; An C; Li J; Chen T; Li X Small; 2022 Apr; 18(13):e2106547. PubMed ID: 35112794 [TBL] [Abstract][Full Text] [Related]
2. Effect of cell-nanostructured substrate interactions on the capture efficiency of HeLa cells. Kong J; Liu Y; Du X; Wang K; Chen W; Huang D; Wei Y; Mao H Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33260171 [TBL] [Abstract][Full Text] [Related]
3. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. Dong J; Chen JF; Smalley M; Zhao M; Ke Z; Zhu Y; Tseng HR Adv Mater; 2020 Jan; 32(1):e1903663. PubMed ID: 31566837 [TBL] [Abstract][Full Text] [Related]
4. Greatly isolated heterogeneous circulating tumor cells using hybrid engineered cell membrane-camouflaged magnetic nanoparticles. Jiang X; Zhang X; Guo C; Liu Z; Guo X; Tian Z; Wang Z; Yang J; Huang X; Ou L J Nanobiotechnology; 2024 May; 22(1):231. PubMed ID: 38720360 [TBL] [Abstract][Full Text] [Related]
5. Natural Biointerface Based on Cancer Cell Membranes for Specific Capture and Release of Circulating Tumor Cells. Ding P; Wang Z; Wu Z; Zhou Y; Sun N; Pei R ACS Appl Mater Interfaces; 2020 May; 12(18):20263-20270. PubMed ID: 32259427 [TBL] [Abstract][Full Text] [Related]
6. Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Hazra RS; Kale N; Boyle C; Molina KB; D'Souza A; Aland G; Jiang L; Chaturvedi P; Ghosh S; Mallik S; Khandare J; Quadir M Carbohydr Polym; 2024 Jan; 323():121418. PubMed ID: 37940250 [TBL] [Abstract][Full Text] [Related]
7. A platform for primary tumor origin identification of circulating tumor cells via antibody cocktail-based in vivo capture and specific aptamer-based multicolor fluorescence imaging strategy. Jia M; Mao Y; Wu C; Wang S; Zhang H Anal Chim Acta; 2019 Nov; 1082():136-145. PubMed ID: 31472702 [TBL] [Abstract][Full Text] [Related]
8. Size-matching hierarchical micropillar arrays for detecting circulating tumor cells in breast cancer patients' whole blood. Wang Z; Xu D; Wang X; Jin Y; Huo B; Wang Y; He C; Fu X; Lu N Nanoscale; 2019 Apr; 11(14):6677-6684. PubMed ID: 30899928 [TBL] [Abstract][Full Text] [Related]
9. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture. Ates HC; Ozgur E; Kulah H Biointerphases; 2018 Mar; 13(2):021001. PubMed ID: 29571263 [TBL] [Abstract][Full Text] [Related]
10. Rapid prototyping of Nanoroughened polydimethylsiloxane surfaces for the enhancement of immunomagnetic isolation and recovery of rare tumor cells. Zhang L; Li Q; Yang R; Xu Z; Kang Y; Xue P Biomed Microdevices; 2019 Jun; 21(3):58. PubMed ID: 31227909 [TBL] [Abstract][Full Text] [Related]
11. TiO Li W; Li R; Huang B; Wang Z; Sun Y; Wei X; Heng C; Liu W; Yu M; Guo SS; Zhao XZ Nanotechnology; 2019 Aug; 30(33):335101. PubMed ID: 30965310 [TBL] [Abstract][Full Text] [Related]
12. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. Chen W; Weng S; Zhang F; Allen S; Li X; Bao L; Lam RH; Macoska JA; Merajver SD; Fu J ACS Nano; 2013 Jan; 7(1):566-75. PubMed ID: 23194329 [TBL] [Abstract][Full Text] [Related]
13. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
14. Reversible capturing and voltammetric determination of circulating tumor cells using two-dimensional nanozyme based on PdMo decorated with gold nanoparticles and aptamer. Yang W; Fan L; Guo Z; Wu H; Chen J; Liu C; Yan Y; Ding S Mikrochim Acta; 2021 Sep; 188(10):319. PubMed ID: 34476628 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic Microfluidic System for Fast and Specific Detection of Circulating Tumor Cells. Zhang F; Wu L; Nie W; Huang L; Zhang J; Li F; Xie HY Anal Chem; 2019 Dec; 91(24):15726-15731. PubMed ID: 31729220 [TBL] [Abstract][Full Text] [Related]
16. Degradable Zinc-Phosphate-Based Hierarchical Nanosubstrates for Capture and Release of Circulating Tumor Cells. Guo S; Xu J; Xie M; Huang W; Yuan E; Liu Y; Fan L; Cheng S; Liu S; Wang F; Yuan B; Dong W; Zhang X; Huang W; Zhou X ACS Appl Mater Interfaces; 2016 Jun; 8(25):15917-25. PubMed ID: 27265681 [TBL] [Abstract][Full Text] [Related]
17. Gelatin Nanoparticle-Coated Silicon Beads for Density-Selective Capture and Release of Heterogeneous Circulating Tumor Cells with High Purity. Huang Q; Wang FB; Yuan CH; He Z; Rao L; Cai B; Chen B; Jiang S; Li Z; Chen J; Liu W; Guo F; Ao Z; Chen S; Zhao XZ Theranostics; 2018; 8(6):1624-1635. PubMed ID: 29556345 [No Abstract] [Full Text] [Related]
18. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers. Wu Z; Pan Y; Wang Z; Ding P; Gao T; Li Q; Hu M; Zhu W; Pei R J Mater Chem B; 2021 Mar; 9(9):2212-2220. PubMed ID: 33616137 [TBL] [Abstract][Full Text] [Related]
19. High-Efficiency Isolation and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluorescent-Magnetic Nanoparticles. Wang Z; Sun N; Liu H; Chen C; Ding P; Yue X; Zou H; Xing C; Pei R ACS Appl Mater Interfaces; 2019 Oct; 11(43):39586-39593. PubMed ID: 31577122 [TBL] [Abstract][Full Text] [Related]
20. Adhesion-based tumor cell capture using nanotopography. Shi L; Wang K; Yang Y Colloids Surf B Biointerfaces; 2016 Nov; 147():291-299. PubMed ID: 27526289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]