These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35112859)

  • 41. Nitrogen-Doped Mesoporous Carbon-Encapsulated MoO
    Tan X; Cui C; Wu S; Qiu B; Wang L; Zhang J
    Chem Asian J; 2017 Jan; 12(1):36-40. PubMed ID: 27860340
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graphite carbon-encapsulated metal nanoparticles derived from Prussian blue analogs growing on natural loofa as cathode materials for rechargeable aluminum-ion batteries.
    Zhang K; Lee TH; Bubach B; Jang HW; Ostadhassan M; Choi JW; Shokouhimehr M
    Sci Rep; 2019 Sep; 9(1):13665. PubMed ID: 31541195
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimizing the Void Size of Yolk-Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries.
    Yang H; Chen LW; He F; Zhang J; Feng Y; Zhao L; Wang B; He L; Zhang Q; Yu Y
    Nano Lett; 2020 Jan; 20(1):758-767. PubMed ID: 31868367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rational Design of Tungsten Selenide @ N-Doped Carbon Nanotube for High-Stable Potassium-Ion Batteries.
    Chen X; Muheiyati H; Sun X; Zhou P; Wang P; Ding X; Qian Y; Xu L
    Small; 2022 Feb; 18(5):e2104363. PubMed ID: 34825476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rational design of Fe
    Wang B; Zhang X; Liu X; Wang G; Wang H; Bai J
    J Colloid Interface Sci; 2018 Oct; 528():225-236. PubMed ID: 29857253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interface-Driven Pseudocapacitance Endowing Sandwiched CoSe
    Zhao H; Qi Y; Liang K; Li J; Zhou L; Chen J; Huang X; Ren Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61555-61564. PubMed ID: 34913689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries.
    Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D
    Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yolk-Shell Sn@C Eggette-like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries.
    Li S; Wang Z; Liu J; Yang L; Guo Y; Cheng L; Lei M; Wang W
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19438-45. PubMed ID: 27420372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries.
    Hu Y; Ye D; Luo B; Hu H; Zhu X; Wang S; Li L; Peng S; Wang L
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29164706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MOF-Derived ZnO/Ni3ZnC0.7/C Hybrids Yolk-Shell Microspheres with Excellent Electrochemical Performances for Lithium Ion Batteries.
    Zhao Y; Li X; Liu J; Wang C; Zhao Y; Yue G
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6472-80. PubMed ID: 26895382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery.
    Li X; Xing Y; Xu J; Deng Q; Shao LH
    Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical porous MnCo
    Yang H; Xie Y; Zhu M; Liu Y; Wang Z; Xu M; Lin S
    Dalton Trans; 2019 Jun; 48(25):9205-9213. PubMed ID: 31157342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries.
    Xiong J; Pan Q; Zheng F; Xiong X; Yang C; Hu D; Huang C
    Front Chem; 2018; 6():78. PubMed ID: 29755966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A carob-inspired nanoscale design of yolk-shell Si@void@TiO
    Zhang C; Yang J; Mi H; Li Y; Zhang P; Zhang H
    Dalton Trans; 2019 May; 48(20):6846-6852. PubMed ID: 31020978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A facile route to prepare mixed transition metal oxide yolk-shell microspheres for enhanced lithium storage.
    Gu Y; Xuan Y; Zhang H; Deng X; Sun Y; Wang L
    Dalton Trans; 2019 Jul; 48(28):10604-10609. PubMed ID: 31225542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Yolk-Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity.
    Hong W; Ge P; Jiang Y; Yang L; Tian Y; Zou G; Cao X; Hou H; Ji X
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10829-10840. PubMed ID: 30801168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tunable Synthesis of Hierarchical Yolk/Double-Shelled SiO
    Gong Q; Wang H; Song W; Sun B; Cao P; Gu S; Sun X; Zhou G
    Chemistry; 2021 Feb; 27(8):2654-2661. PubMed ID: 32866338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries.
    Yan Y; Xu Z; Liu C; Dou H; Wei J; Zhao X; Ma J; Dong Q; Xu H; He YS; Ma ZF; Yang X
    ACS Appl Mater Interfaces; 2019 May; 11(19):17375-17383. PubMed ID: 31008579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 9,10-Anthraquinone/K
    Yan L; Zeng X; Zhao S; Jiang W; Li Z; Gao X; Liu T; Ji Z; Ma T; Ling M; Liang C
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8353-8360. PubMed ID: 33560815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage.
    Yang J; Ju Z; Jiang Y; Xing Z; Xi B; Feng J; Xiong S
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29215156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.