These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35112860)

  • 1. Higher Damping Capacities in Gradient Nanograined Metals.
    Qian S; Ni Y; Gong Y; Yang F; Tong Q
    Nano Lett; 2022 Feb; 22(4):1491-1496. PubMed ID: 35112860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Strongest Size in Gradient Nanograined Metals.
    Cao P
    Nano Lett; 2020 Feb; 20(2):1440-1446. PubMed ID: 31944115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading.
    Zhou X; Li X; Lu K
    Phys Rev Lett; 2019 Mar; 122(12):126101. PubMed ID: 30978032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation Twinning Induced High Tensile Ductility of a Gradient Nanograined Cu-Based Alloy.
    Wang J; Tao N
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
    Hu J; Shi YN; Sauvage X; Sha G; Lu K
    Science; 2017 Mar; 355(6331):1292-1296. PubMed ID: 28336664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-Induced Brittle Failure along Grain Boundaries in Boron Carbide.
    Yang X; Coleman SP; Lasalvia JC; Goddard WA; An Q
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5072-5080. PubMed ID: 29346723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of point defects on grain boundary mobility in bcc tungsten.
    Borovikov V; Tang XZ; Perez D; Bai XM; Uberuaga BP; Voter AF
    J Phys Condens Matter; 2013 Jan; 25(3):035402. PubMed ID: 23238084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic and atomic structural analyses of the screw dislocation absorption at tilt grain boundaries in BCC-Fe.
    Kura C; Wakeda M; Hayashi K; Ohmura T
    Sci Rep; 2022 Dec; 12(1):21301. PubMed ID: 36494412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermal stability of nanograined metals below a critical grain size.
    Zhou X; Li XY; Lu K
    Science; 2018 May; 360(6388):526-530. PubMed ID: 29724953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior Strength and Ductility of 304 Austenitic Stainless Steel with Gradient Dislocations.
    Pan Q; Guo S; Cui F; Jing L; Lu L
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-Dual-Phase Metallic Glass Film Enhances Strength and Ductility of a Gradient Nanograined Magnesium Alloy.
    Liu C; Liu Y; Wang Q; Liu X; Bao Y; Wu G; Lu J
    Adv Sci (Weinh); 2020 Oct; 7(19):2001480. PubMed ID: 33042760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation.
    Zhang L; Lu C; Tieu K; Zhao X; Pei L
    Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Ultrahigh Hardness in Electrodeposited Nanograined Ni-Based Binary Alloys.
    Zheng X; Hu J; Li J; Shi Y
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites.
    Li Z; Zhang Y; Zhang Z; Cui YT; Guo Q; Liu P; Jin S; Sha G; Ding K; Li Z; Fan T; Urbassek HM; Yu Q; Zhu T; Zhang D; Wang YM
    Nat Commun; 2022 Sep; 13(1):5581. PubMed ID: 36151199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Gradient Polymers with Enhanced Damping Capacities.
    Wang D; Zhang H; Guo J; Cheng B; Cao Y; Lu S; Zhao N; Xu J
    Macromol Rapid Commun; 2016 Apr; 37(7):655-61. PubMed ID: 26776353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries.
    Wu S; Kou Z; Lai Q; Lan S; Katnagallu SS; Hahn H; Taheriniya S; Wilde G; Gleiter H; Feng T
    Nat Commun; 2022 Sep; 13(1):5468. PubMed ID: 36115860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid heating induced ultrahigh stability of nanograined copper.
    Li XY; Zhou X; Lu K
    Sci Adv; 2020 Apr; 6(17):eaaz8003. PubMed ID: 32494653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the Shear Banding in Gradient Nano-Grained Metals.
    Chen T; Li J
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.