BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35113117)

  • 21. Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures.
    Niu X; Xiao S; Sun D; Shi A; Zhou Z; Chen W; Li X; Wang J
    Mater Horiz; 2021 Aug; 8(8):2208-2215. PubMed ID: 34846425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Layer-Number Engineered Momentum-Indirect Interlayer Excitons with Large Spectral Tunability.
    Yao W; Yang D; Chen Y; Hu J; Li J; Li D
    Nano Lett; 2022 Sep; 22(17):7230-7237. PubMed ID: 36036787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interface engineering of charge-transfer excitons in 2D lateral heterostructures.
    Rosati R; Paradisanos I; Huang L; Gan Z; George A; Watanabe K; Taniguchi T; Lombez L; Renucci P; Turchanin A; Urbaszek B; Malic E
    Nat Commun; 2023 Apr; 14(1):2438. PubMed ID: 37117167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic Electric Field-Induced Properties in Janus MoSSe van der Waals Structures.
    Li F; Wei W; Wang H; Huang B; Dai Y; Jacob T
    J Phys Chem Lett; 2019 Feb; 10(3):559-565. PubMed ID: 30658531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides.
    Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H
    J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe
    Sung J; Zhou Y; Scuri G; Zólyomi V; Andersen TI; Yoo H; Wild DS; Joe AY; Gelly RJ; Heo H; Magorrian SJ; Bérubé D; Valdivia AMM; Taniguchi T; Watanabe K; Lukin MD; Kim P; Fal'ko VI; Park H
    Nat Nanotechnol; 2020 Sep; 15(9):750-754. PubMed ID: 32661373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical Control and Transport of Tightly Bound Interlayer Excitons in a MoSe_{2}/hBN/MoSe_{2} Heterostructure.
    Zhang L; Gu L; Ni R; Xie M; Park S; Jang H; Ma R; Taniguchi T; Watanabe K; Zhou Y
    Phys Rev Lett; 2024 May; 132(21):216903. PubMed ID: 38856288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure of strain-tunable Janus WSSe-ZnO heterostructures from first-principles.
    Peterson EA; Debela TT; Gomoro GM; Neaton JB; Asres GA
    RSC Adv; 2022 Oct; 12(48):31303-31316. PubMed ID: 36348994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction.
    Ross JS; Rivera P; Schaibley J; Lee-Wong E; Yu H; Taniguchi T; Watanabe K; Yan J; Mandrus D; Cobden D; Yao W; Xu X
    Nano Lett; 2017 Feb; 17(2):638-643. PubMed ID: 28006106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced photoelectric performance of MoSSe/MoS
    Xu X; Jiang X; Gao Q; Yang L; Sun X; Wang Z; Li D; Cui B; Liu D
    Phys Chem Chem Phys; 2022 Dec; 24(48):29882-29890. PubMed ID: 36468446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics.
    Liu Y; Elbanna A; Gao W; Pan J; Shen Z; Teng J
    Adv Mater; 2022 Jun; 34(25):e2107138. PubMed ID: 34700359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiative pattern of intralayer and interlayer excitons in two-dimensional WS
    Aly MA; Shah M; Schneider LM; Kang K; Koch M; Yang EH; Rahimi-Iman A
    Sci Rep; 2022 Apr; 12(1):6939. PubMed ID: 35484181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Far-Red Interlayer Excitons of Perovskite/Quantum-Dot Heterostructures.
    Kim TJ; Lee SH; Lee E; Seo C; Kim J; Joo J
    Adv Sci (Weinh); 2023 May; 10(14):e2207653. PubMed ID: 36938849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures.
    Rivera P; Schaibley JR; Jones AM; Ross JS; Wu S; Aivazian G; Klement P; Seyler K; Clark G; Ghimire NJ; Yan J; Mandrus DG; Yao W; Xu X
    Nat Commun; 2015 Feb; 6():6242. PubMed ID: 25708612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic properties of Janus MXY/graphene (M = Mo, W; X ≠ Y = S, Se) van der Waals structures: a first-principles study.
    Yu S; Wei W; Li F; Huang B; Dai Y
    Phys Chem Chem Phys; 2020 Nov; 22(44):25675-25684. PubMed ID: 33146159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin.
    Hsu WT; Lin BH; Lu LS; Lee MH; Chu MW; Li LJ; Yao W; Chang WH; Shih CK
    Sci Adv; 2019 Dec; 5(12):eaax7407. PubMed ID: 32064316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppressed Carrier Recombination in Janus MoSSe Bilayer Stacks: A Time-Domain Ab Initio Study.
    Song B; Liu L; Yam C
    J Phys Chem Lett; 2019 Sep; 10(18):5564-5570. PubMed ID: 31475829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable interlayer coupling and Schottky barrier in graphene and Janus MoSSe heterostructures by applying an external field.
    Li Y; Wang J; Zhou B; Wang F; Miao Y; Wei J; Zhang B; Zhang K
    Phys Chem Chem Phys; 2018 Oct; 20(37):24109-24116. PubMed ID: 30204181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH)
    Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J
    RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deterministic Areal Enhancement of Interlayer Exciton Emission by a Plasmonic Lattice on Mirror.
    Zhu J; Shen F; Chen Z; Liu F; Jin S; Lei D; Xu J
    ACS Nano; 2024 May; 18(21):13599-13606. PubMed ID: 38742607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.