These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35113484)

  • 1. Corrosion behavior and degradation mechanism of micro-extruded 3D printed ordered pore topological Fe scaffolds.
    Mishra DK; Pandey PM
    J Biomed Mater Res B Appl Biomater; 2022 Jun; 110(6):1439-1459. PubMed ID: 35113484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro degradation behaviour, cytocompatibility and hemocompatibility of topologically ordered porous iron scaffold prepared using 3D printing and pressureless microwave sintering.
    Sharma P; Jain KG; Pandey PM; Mohanty S
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110247. PubMed ID: 31753401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion-based 3D printed biodegradable porous iron.
    Putra NE; Leeflang MA; Minneboo M; Taheri P; Fratila-Apachitei LE; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2021 Feb; 121():741-756. PubMed ID: 33221501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology.
    Sharma P; Pandey PM
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109776. PubMed ID: 31349532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application.
    Sharma P; Pandey PM
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():838-852. PubMed ID: 30889759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.
    Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF
    Dong J; Tümer N; Putra NE; Zhu J; Li Y; Leeflang MA; Taheri P; Fratila-Apachitei LE; Mol JMC; Zadpoor AA; Zhou J
    Biomater Sci; 2021 Oct; 9(21):7159-7182. PubMed ID: 34549742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additively manufactured biodegradable porous magnesium.
    Li Y; Zhou J; Pavanram P; Leeflang MA; Fockaert LI; Pouran B; Tümer N; Schröder KU; Mol JMC; Weinans H; Jahr H; Zadpoor AA
    Acta Biomater; 2018 Feb; 67():378-392. PubMed ID: 29242158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds.
    Putra NE; Leeflang MA; Taheri P; Fratila-Apachitei LE; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2021 Oct; 134():774-790. PubMed ID: 34311105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additively manufactured functionally graded biodegradable porous iron.
    Li Y; Jahr H; Pavanram P; Bobbert FSL; Paggi U; Zhang XY; Pouran B; Leeflang MA; Weinans H; Zhou J; Zadpoor AA
    Acta Biomater; 2019 Sep; 96():646-661. PubMed ID: 31302295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes.
    Putra NE; Leeflang MA; Klimopoulou M; Dong J; Taheri P; Huan Z; Fratila-Apachitei LE; Mol JMC; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2023 May; 162():182-198. PubMed ID: 36972809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.
    Singh S; Vashisth P; Shrivastav A; Bhatnagar N
    J Mech Behav Biomed Mater; 2019 Jun; 94():54-62. PubMed ID: 30856480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.
    Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.