BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35113522)

  • 1. Charge-Modulated Accessibility of Tyrosine Residues for Silk-Elastin Copolymer Cross-Linking.
    Gonzalez-Obeso C; Backlund FG; Kaplan DL
    Biomacromolecules; 2022 Mar; 23(3):760-765. PubMed ID: 35113522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenol red-silk tyrosine cross-linked hydrogels.
    Sundarakrishnan A; Herrero Acero E; Coburn J; Chwalek K; Partlow B; Kaplan DL
    Acta Biomater; 2016 Sep; 42():102-113. PubMed ID: 27345138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk Hydrogels Crosslinked by the Fenton Reaction.
    Choi J; McGill M; Raia NR; Hasturk O; Kaplan DL
    Adv Healthc Mater; 2019 Sep; 8(17):e1900644. PubMed ID: 31343117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative investigation of Bombyx mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking.
    Chirila TV; Suzuki S; Papolla C
    Biotechnol Appl Biochem; 2017 Nov; 64(6):771-781. PubMed ID: 28220960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horseradish Peroxidase Catalyzed Silk-Prefoldin Composite Hydrogel Networks.
    Sahoo JK; Xu D; Falcucci T; Choi J; Hasturk O; Clark DS; Kaplan DL
    ACS Appl Bio Mater; 2023 Jan; 6(1):203-208. PubMed ID: 36580433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a tyrosyl radical mediated protein cross-linking reaction by electrostatic interaction.
    Minamihata K; Goto M; Kamiya N
    Bioconjug Chem; 2012 Aug; 23(8):1600-9. PubMed ID: 22816877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable hydrogel systems crosslinked by horseradish peroxidase.
    Lee F; Bae KH; Kurisawa M
    Biomed Mater; 2015 Dec; 11(1):014101. PubMed ID: 26694014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight.
    Wang S; Huang W; Feng Z; Tian X; Wang D; Rao L; Tan M; Roongsawang N; Song H; Jiang W; Bai W
    Int J Biol Macromol; 2023 Mar; 231():123239. PubMed ID: 36641025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organized ECM-mimetic model based on an amphiphilic multiblock silk-elastin-like corecombinamer with a concomitant dual physical gelation process.
    Fernández-Colino A; Arias FJ; Alonso M; Rodríguez-Cabello JC
    Biomacromolecules; 2014 Oct; 15(10):3781-93. PubMed ID: 25230341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drop-On-Drop Multimaterial 3D Bioprinting Realized by Peroxidase-Mediated Cross-Linking.
    Sakai S; Ueda K; Gantumur E; Taya M; Nakamura M
    Macromol Rapid Commun; 2018 Feb; 39(3):. PubMed ID: 29226501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications.
    Khanmohammadi M; Dastjerdi MB; Ai A; Ahmadi A; Godarzi A; Rahimi A; Ai J
    Biomater Sci; 2018 May; 6(6):1286-1298. PubMed ID: 29714366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine-Selective Functionalization for Bio-Orthogonal Cross-Linking of Engineered Protein Hydrogels.
    Madl CM; Heilshorn SC
    Bioconjug Chem; 2017 Mar; 28(3):724-730. PubMed ID: 28151642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin.
    Partlow BP; Bagheri M; Harden JL; Kaplan DL
    Biomacromolecules; 2016 Nov; 17(11):3570-3579. PubMed ID: 27736062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking.
    Elliott WH; Bonani W; Maniglio D; Motta A; Tan W; Migliaresi C
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12099-108. PubMed ID: 25978549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Förster Resonance Energy Transfer-Paired Hydrogel Forming Silk-Elastin-Like Recombinamers by Recombinant Conjugation of Fluorescent Proteins.
    Ibáñez-Fonseca A; Alonso M; Arias FJ; Rodríguez-Cabello JC
    Bioconjug Chem; 2017 Mar; 28(3):828-835. PubMed ID: 28158945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and reversible crosslinking of a silk elastin-like polymer.
    Gonzalez-Obeso C; Rodriguez-Cabello JC; Kaplan DL
    Acta Biomater; 2022 Mar; 141():14-23. PubMed ID: 34971785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag.
    Minamihata K; Goto M; Kamiya N
    Bioconjug Chem; 2011 Jan; 22(1):74-81. PubMed ID: 21142129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific covalent immobilization of proteins through dityrosine cross-links.
    Endrizzi BJ; Huang G; Kiser PF; Stewart RJ
    Langmuir; 2006 Dec; 22(26):11305-10. PubMed ID: 17154619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.