These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35113531)
1. Paper-Based Optical Nose Made with Bimetallic Nanoparticles for Monitoring Ignitable Liquids in Gasoline. Bordbar MM; Tashkhourian J; Hemmateenejad B ACS Appl Mater Interfaces; 2022 Feb; 14(6):8333-8342. PubMed ID: 35113531 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Sheini A Mikrochim Acta; 2020 Feb; 187(3):167. PubMed ID: 32055989 [TBL] [Abstract][Full Text] [Related]
3. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407 [TBL] [Abstract][Full Text] [Related]
4. Acid alteration of several ignitable liquids of potential use in arsons. Martín-Alberca C; Carrascosa H; San Román I; Bartolomé L; García-Ruiz C Sci Justice; 2018 Jan; 58(1):7-16. PubMed ID: 29332697 [TBL] [Abstract][Full Text] [Related]
5. Fuel forensics: Recent advancements in profiling of adulterated fuels by ATR-FTIR spectroscopy and chemometric approaches. Babu BK; Manohar Yadav M; Singh S; Kumar Yadav V Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124049. PubMed ID: 38394884 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Biodegraded Ignitable Liquids by Headspace-Ion Mobility Spectrometry. P Calle JL; Ferreiro-González M; Aliaño-González MJ; F Barbero G; Palma M Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113899 [TBL] [Abstract][Full Text] [Related]
7. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Bordbar MM; Nguyen TA; Arduini F; Bagheri H Mikrochim Acta; 2020 Oct; 187(11):621. PubMed ID: 33084996 [TBL] [Abstract][Full Text] [Related]
8. An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Bordbar MM; Hemmateenejad B; Tashkhourian J; Nami-Ana SF Mikrochim Acta; 2018 Oct; 185(10):493. PubMed ID: 30284031 [TBL] [Abstract][Full Text] [Related]
9. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319 [TBL] [Abstract][Full Text] [Related]
10. Quality assessment of gasoline using comprehensive two-dimensional gas chromatography combined with unfolded partial least squares: A reliable approach for the detection of gasoline adulteration. Parastar H; Mostafapour S; Azimi G J Sep Sci; 2016 Jan; 39(2):367-74. PubMed ID: 26541637 [TBL] [Abstract][Full Text] [Related]
11. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures. Baerncopf JM; McGuffin VL; Smith RW J Forensic Sci; 2011 Jan; 56(1):70-81. PubMed ID: 20854360 [TBL] [Abstract][Full Text] [Related]
12. Study of the Weathering Process of Gasoline by eNose. Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020 [TBL] [Abstract][Full Text] [Related]
13. A study of adulteration in gasoline samples using flame emission spectroscopy and chemometrics tools. de Paulo JM; Mendes G; Barros JE; Barbeira PJ Analyst; 2012 Dec; 137(24):5919-24. PubMed ID: 23087914 [TBL] [Abstract][Full Text] [Related]
14. Substrate interferences in identifying flammable liquids in food, environmental and biological samples: case studies. Borusiewicz R Sci Justice; 2015 May; 55(3):176-80. PubMed ID: 25934369 [TBL] [Abstract][Full Text] [Related]
15. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry. Martín-Alberca C; García-Ruiz C; Delémont O J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121 [TBL] [Abstract][Full Text] [Related]
16. Application of an HS-MS for the detection of ignitable liquids from fire debris. Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705 [TBL] [Abstract][Full Text] [Related]
18. Identification of gasoline adulteration using comprehensive two-dimensional gas chromatography combined to multivariate data processing. Pedroso MP; de Godoy LA; Ferreira EC; Poppi RJ; Augusto F J Chromatogr A; 2008 Aug; 1201(2):176-82. PubMed ID: 18571187 [TBL] [Abstract][Full Text] [Related]
19. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method. Bruno TJ; Allen S J Res Natl Inst Stand Technol; 2013; 118():29-51. PubMed ID: 26401423 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science. de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]